Standard and fractional reflected Ornstein-Uhlenbeck processes as the limits of square roots of Cox-Ingersoll-Ross processes

被引:9
|
作者
Mishura, Yuliya [1 ]
Yurchenko-Tytarenko, Anton [2 ]
机构
[1] Taras Shevchenko Natl Univ Kyiv, Dept Probabil Stat & Actuarial Math, Kiev, Ukraine
[2] Univ Oslo, Dept Math, Oslo, Norway
关键词
Cox-Ingersoll-Ross process; reflected Ornstein-Uhlenbeck process; fractional Brownian motion; DIFFUSION-APPROXIMATION; STOCHASTIC VOLATILITY; TERM STRUCTURE; QUEUE;
D O I
10.1080/17442508.2022.2047188
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we establish a new connection between Cox-Ingersoll-Ross (CIR) and reflected Ornstein-Uhlenbeck (ROU) models driven by either a standard Wiener process or a fractional Brownian motion with H > 1/2. We prove that, with probability 1, the square root of the CIR process converges uniformly on compacts to the ROU process as the mean reversion parameter tends to either alpha(2)/4 (in the standard case) or to 0 (in the fractional case). This also allows to obtain a new representation of the reflection function of the ROU as the limit of integral functionals of the CIR processes. The results of the paper are illustrated by simulations.
引用
收藏
页码:99 / 117
页数:19
相关论文
共 26 条
  • [1] On drift parameter estimation for reflected fractional Ornstein-Uhlenbeck processes
    Lee, Chihoon
    Song, Jian
    STOCHASTICS-AN INTERNATIONAL JOURNAL OF PROBABILITY AND STOCHASTIC PROCESSES, 2016, 88 (05) : 751 - 778
  • [2] Fractional Levy Cox-Ingersoll-Ross and Jacobi processes
    Fink, Holger
    Schluechtermann, Georg
    STATISTICS & PROBABILITY LETTERS, 2018, 142 : 84 - 91
  • [3] Limit theorems for reflected Ornstein-Uhlenbeck processes
    Huang, Gang
    Mandjes, Michel
    Spreij, Peter
    STATISTICA NEERLANDICA, 2014, 68 (01) : 25 - 42
  • [4] On the Exponentials of Fractional Ornstein-Uhlenbeck Processes
    Matsui, Muneya
    Shieh, Narn-Rueih
    ELECTRONIC JOURNAL OF PROBABILITY, 2009, 14 : 594 - 611
  • [5] Fractional iterated Ornstein-Uhlenbeck Processes
    Kalemkerian, Juan
    Rafael Leon, Jose
    ALEA-LATIN AMERICAN JOURNAL OF PROBABILITY AND MATHEMATICAL STATISTICS, 2019, 16 (02): : 1105 - 1128
  • [6] A GENERAL LOWER BOUND OF PARAMETER ESTIMATION FOR REFLECTED ORNSTEIN-UHLENBECK PROCESSES
    Zang, Qing-Pei
    Zhang, Li-Xin
    JOURNAL OF APPLIED PROBABILITY, 2016, 53 (01) : 22 - 32
  • [7] On the spectral density of fractional Ornstein-Uhlenbeck processes
    Shi, Shuping
    Yu, Jun
    Zhang, Chen
    JOURNAL OF ECONOMETRICS, 2024, 245 (1-2)
  • [8] THE STATIONARY DISTRIBUTIONS OF TWO CLASSES OF REFLECTED ORNSTEIN-UHLENBECK PROCESSES
    Xing, Xiaoyu
    Zhang, Wei
    Wang, Yongjin
    JOURNAL OF APPLIED PROBABILITY, 2009, 46 (03) : 709 - 720
  • [9] Sequential maximum likelihood estimation for reflected Ornstein-Uhlenbeck processes
    Lee, Chihoon
    Bishwal, Jaya P. N.
    Lee, Myung Hee
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2012, 142 (05) : 1234 - 1242
  • [10] Least squares estimators for reflected Ornstein-Uhlenbeck processes
    Han, Yuecaia
    Zhang, Dingwen
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2024, 53 (21) : 7746 - 7759