Chitosan-Coated Superparamagnetic Fe3O4 Nanoparticles for Magnetic Resonance Imaging, Magnetic Hyperthermia, and Drug Delivery

被引:10
|
作者
Mistral, Jules [1 ]
Koon, Kevin Tse Ve [2 ]
Cotica, Luiz Fernando [3 ]
Dias, Gustavo Sanguino [3 ]
Santos, Ivair Aparecido [3 ]
Alcouffe, Pierre [1 ]
Milhau, Nadege [4 ]
Pin, Didier [4 ]
Chapet, Olivier [5 ]
Serghei, Anatoli [1 ]
Sudre, Guillaume [1 ]
Ladaviere, Catherine [1 ]
De Oliveira, Paula Nunes [1 ]
David, Laurent [1 ]
机构
[1] Univ Claude Bernard Lyon 1, Univ Jean Monnet St Etienne, CNRS, Ingn Mat Polymeeres IMP,UMR 5223, F-69100 Villeurbanne, France
[2] Univ Claude Bernard Lyon 1, INSERM, INSA Lyon, CNRSRINGGOLD,CREATIS,UMR 5223,U1294, F-69100 Villeurbanne, France
[3] Univ Estadual Maringa, Dept Phys, BR-87020900 Maringa, Parana, Brazil
[4] Vet Sch Lyon VetAgro Sup, UPSP 2016 A104 Interact Cellules Environement, F-69280 Marcy Letoile, France
[5] Ctr Hosp Lyon Sud, Dept Radiat Oncol, F-69310 Pierre Benite, France
关键词
magnetic nanoparticles; chitosan; hyperthermia; MRI; cytotoxicity; nanomedicine; IRON-OXIDE NANOPARTICLES; BIOMEDICAL APPLICATIONS; POLYETHYLENE-GLYCOL; CHITIN; BEHAVIOR; SIZE; FTIR;
D O I
10.1021/acsanm.3c06118
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Superparamagnetic iron oxide nanoparticles (SPIONs) have great potential for biomedical applications as multipurpose magnetic resonance imaging (MRI) contrast agents, and some systems have already been approved by The United States Food and Drug Administration for clinical use. Superparamagnetic behavior, high magnetic saturation, and fast synthesis are the major advantages of these nanomaterials. Polymer coatings are often used to prevent cluster formation and to improve biocompatibility of nanoparticles. In this work, we propose to use chitosan (CS) coatings as a means to tune the biocompatibility and magnetic properties of the SPIONs. For this purpose, magnetite (Fe3O4) SPIONs with various CS coatings were synthesized. CS with identical degree of polymerization (DPw = 450) but different degrees of acetylation (DA of 1, 14, and 34%) were employed to tune the hydrophilic properties of the SPIONs' coatings. A highly crystalline magnetite phase with a superparamagnetic behavior was evidenced for all the studied nanoparticles, whose average sizes varied between 5 and 10 nm. Adjusting the preparation process enabled us to control precisely the amount of coating on the SPIONs. Such coatings significantly impacted their magnetic properties, which were found to decrease with the quantity of CS and also with its DA. Interestingly, cytocompatibility was enhanced by the presence of the CS coating so that all CS-coated SPIONs studied were found to be nontoxic, regardless of the amount of coating . This trade-off approach suggests that optimal SPIONs systems would consist of a magnetite core, coated with a low amount of low-DA CS. Finally, the multimodal features of the SPIONs were evidenced by performing magnetic hyperthermia and MRI measurements. Despite significant differences, for all the CS-coated SPIONs, the magnetic properties remained strong enough to envision their use in various biomedical applications such as magnetic hyperthermia, MRI contrast agents, magnetic field-assisted drug delivery, and as platforms for further biological functionalization.
引用
收藏
页码:7097 / 7110
页数:14
相关论文
共 50 条
  • [21] Biocompatible nanoclusters of O-carboxymethyl chitosan-coated Fe3O4 nanoparticles: synthesis, characterization and magnetic heating efficiency
    Linh, P. H.
    Chien, N. V.
    Dung, D. D.
    Nam, P. H.
    Hoa, D. T.
    Anh, N. T. N.
    Hong, L. V.
    Phuc, N. X.
    Phong, P. T.
    JOURNAL OF MATERIALS SCIENCE, 2018, 53 (12) : 8887 - 8900
  • [22] RGD-Functionalized Fe3O4 nanoparticles for magnetic hyperthermia
    Arriortua, Oihane K.
    Insausti, Maite
    Lezama, Luis
    Gil de Muro, Izaskun
    Garaio, Eneko
    de la Fuente, Jesus Martinez
    Fratila, Raluca M.
    Morales, Maria P.
    Costa, Rocio
    Eceiza, Maite
    Sagartzazu-Aizpurua, Maialen
    Aizpurua, Jesus M.
    COLLOIDS AND SURFACES B-BIOINTERFACES, 2018, 165 : 315 - 324
  • [23] Optimum conditions for lipase immobilization on chitosan-coated Fe3O4 nanoparticles
    Kuo, Chia-Hung
    Liu, Yung-Chuan
    Chang, Chieh-Ming J.
    Chen, Jiann-Hwa
    Chang, Cheng
    Shieh, Chwen-Jen
    CARBOHYDRATE POLYMERS, 2012, 87 (04) : 2538 - 2545
  • [24] Magnetic Resonance Imaging of Mouse Islet Grafts Labeled with Novel Chitosan-Coated Superparamagnetic Iron Oxide Nanoparticles
    Juang, Jyuhn-Huarng
    Shen, Chia-Rui
    Wang, Jiun-Jie
    Kuo, Chien-Hung
    Chien, Yu-Wen
    Kuo, Hsiao-Yunn
    Chen, Fu-Rong
    Chen, Ming H.
    Yen, Tzu-Chen
    Tsai, Zei-Tsan
    PLOS ONE, 2013, 8 (04):
  • [25] Cytocompatibility of pH-sensitive, chitosan-coated Fe3O4 nanoparticles in gynecological cells
    Zhang, Taohong
    Wang, Lisha
    He, Xinyi
    Lu, Hailin
    Gao, Li
    FRONTIERS IN MEDICINE, 2022, 9
  • [26] Superparamagnetic Ag-Fe3O4 composites nanoparticles for magnetic fluid hyperthermia
    Hajalilou, A.
    Ferreira, L. P.
    Jorge, M. E. Melo
    Reis, C. P.
    Cruz, M. M.
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2021, 537
  • [27] Surface Decorated Fe3O4 Nanoparticles for Magnetic Hyperthermia
    Gawali, Santosh L.
    Barick, K. C.
    Hassan, P. A.
    61ST DAE-SOLID STATE PHYSICS SYMPOSIUM, 2017, 1832
  • [28] Investigation of magnetite Fe3O4 nanoparticles for magnetic hyperthermia
    Surowiec, Zbigniew
    Miaskowski, Arkadiusz
    Budzynski, Mieczyslaw
    NUKLEONIKA, 2017, 62 (02) : 183 - 186
  • [29] Thermo-magnetic stability of magnetic Fe3O4 nanoparticles for hyperthermia
    Pan, Y. M.
    Zhang, W.
    Hu, Z. F.
    Feng, Z. Y.
    Zhang, X. P.
    MATERIALS SCIENCE-POLAND, 2020, 38 (04): : 637 - 643
  • [30] Facile synthesis of superparamagnetic Fe3O4 nanoparticles at therapeutic temperature range for magnetic hyperthermia therapy
    Meneses-Brassea, Bianca P.
    Cyr, Camille M.
    Martinez, Israel
    Botez, Cristian E.
    El-Gendy, Ahmed A.
    JOURNAL OF NANOPARTICLE RESEARCH, 2020, 22 (11)