A theoretical assessment of energy efficiency of wave tower as an oscillating wave surge converter

被引:0
|
作者
Jahangir, Mohammad Hossein [1 ,2 ]
Houmani, Ali [1 ]
Kargarzadeh, Arash [1 ]
机构
[1] Univ Tehran, Fac New Sci & Technol, Renewable Energies & Environm Dept, Tehran, Iran
[2] Univ Tehran, Fac New Sci & Technol, Hydro Energies Lab, Tehran, Iran
关键词
Ocean energy; Marine energy; Wave energy converter; Wave tower; Wave roller; HYDRODYNAMICS;
D O I
10.1016/j.oceaneng.2024.116748
中图分类号
U6 [水路运输]; P75 [海洋工程];
学科分类号
0814 ; 081505 ; 0824 ; 082401 ;
摘要
Recently, wave power has found a place among commercially viable renewables, but its costly manufacturing and installation costs make it less competitive than other renewable energy systems. Therefore, wave energy converter (WEC) developer firms must enhance their systems and reduce their expenses. Oscillating wave surge converter systems, such as Wave Roller and Oyster WEC, have high efficiency but require a large area of effect to receive sufficient wave energy and deliver high efficiency. They are incapable of extracting energy when the incident wave's orientation changes because they can only absorb waves traveling in one direction. To enhance this system, the Wave Tower wave surge converter concept has been developed. In this paper, a comparison of Wave Tower and Wave Roller systems reveals that the Wave Tower system with a 30 m2 area of effect has an advantage over the bottom -fixed Wave Roller system with a 180 m2 area of effect in mild conditions and delivers 79 percent more power, but its operation is restricted in conditions with high wave heights and periods. The potential power was computed numerically by solving the wave tower's dynamic motion for various wave masses and angular frequencies. In conclusion, the available power was expressed as a function of the incident wave's properties and the tower's mass, area of effect, and angular frequency. At a wave period of 8 s and a wave height of 1 m, this innovative wave surge converter produces 107 kW of output power, which is greater than other oscillating wave energy converters.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] A self-floating oscillating surge wave energy converter
    Li, Qiaofeng
    Mi, Jia
    Li, Xiaofan
    Chen, Shuo
    Jiang, Boxi
    Zuo, Lei
    ENERGY, 2021, 230
  • [2] The oscillating wave surge converter
    Folley, M
    Whittaker, T
    Osterried, M
    PROCEEDINGS OF THE FOURTEENTH (2004) INTERNATIONAL OFFSHORE AND POLAR ENGINEERING CONFERENCE, VOL 1, 2004, : 189 - 193
  • [3] Performance characterization and modeling of an oscillating surge wave energy converter
    Ahmed, Alaa
    Yang, Lisheng
    Huang, Jianuo
    Shalaby, Ahmed
    Datla, Raju
    Zuo, Lei
    Hajj, Muhammad
    NONLINEAR DYNAMICS, 2024, 112 (06) : 4879 - 4898
  • [4] The modular concept of the Oscillating Wave Surge Converter
    Sarkar, Dripta
    Doherty, Kenneth
    Dias, Frederic
    RENEWABLE ENERGY, 2016, 85 : 484 - 497
  • [5] A bionic design of oscillating wave surge energy converter based on scallops
    Wang, Yize
    Liu, Zhenqing
    ENERGY, 2024, 304
  • [6] Wave energy extraction for an array of dual-oscillating wave surge converter with different layouts
    Cheng, Yong
    Xi, Chen
    Dai, Saishuai
    Ji, Chunyan
    Cocard, Margot
    APPLIED ENERGY, 2021, 292
  • [7] Load shedding characteristics of an oscillating surge wave energy converter with variable geometry
    Choiniere, Michael A.
    Tom, Nathan M.
    Thiagarajan, Krish P.
    OCEAN ENGINEERING, 2019, 186
  • [8] Wave interaction with an oscillating wave surge converter, Part I: Viscous effects
    Wei, Yanji
    Rafiee, Ashkan
    Henry, Alan
    Dias, Frederic
    OCEAN ENGINEERING, 2015, 104 : 185 - 203
  • [9] HYDRODYNAMIC CHARACTERISTICS OF A WAVE ENERGY CONVERTER OF DUAL VERTICAL POROUS PLATES OSCILLATING IN SURGE
    Boualia, Yasmine
    Chioukh, Nadji
    Hamoudi, Benameur
    Yuksel, Yalcin
    INTERNATIONAL JOURNAL OF FLUID MECHANICS RESEARCH, 2021, 48 (03) : 17 - 40
  • [10] Hydrodynamic analysis and optimization of a retractable oscillating wave surge converter
    Nguyen, H. P.
    Nguyen-Thoi, T.
    OCEAN ENGINEERING, 2025, 328