Semantic Disentanglement Adversarial Hashing for Cross-Modal Retrieval

被引:9
|
作者
Meng, Min [1 ]
Sun, Jiaxuan [1 ]
Liu, Jigang [2 ]
Yu, Jun [1 ]
Wu, Jigang [1 ]
机构
[1] Guangdong Univ Technol, Sch Comp Sci, Guangzhou 510006, Peoples R China
[2] Ping An Life Insurance China, Shenzhen 518046, Peoples R China
基金
中国国家自然科学基金;
关键词
Cross-modal retrieval; hashing; adversarial learning; disentangled representation; REPRESENTATION; NETWORK;
D O I
10.1109/TCSVT.2023.3293104
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Cross-modal hashing has gained considerable attention in cross-modal retrieval due to its low storage cost and prominent computational efficiency. However, preserving more semantic information in the compact hash codes to bridge the modality gap still remains challenging. Most existing methods unconsciously neglect the influence of modality-private information on semantic embedding discrimination, leading to unsatisfactory retrieval performance. In this paper, we propose a novel deep cross-modal hashing method, called Semantic Disentanglement Adversarial Hashing (SDAH), to tackle these challenges for cross-modal retrieval. Specifically, SDAH is designed to decouple the original features of each modality into modality-common features with semantic information and modality-private features with disturbing information. After the preliminary decoupling, the modality-private features are shuffled and treated as positive interactions to enhance the learning of modality-common features, which can significantly boost the discriminative and robustness of semantic embeddings. Moreover, the variational information bottleneck is introduced in the hash feature learning process, which can avoid the loss of a large amount of semantic information caused by the high-dimensional feature compression. Finally, the discriminative and compact hash codes can be computed directly from the hash features. A large number of comparative and ablation experiments show that SDAH achieves superior performance than other state-of-the-art methods.
引用
收藏
页码:1914 / 1926
页数:13
相关论文
共 50 条
  • [1] Deep semantic similarity adversarial hashing for cross-modal retrieval
    Qiang, Haopeng
    Wan, Yuan
    Xiang, Lun
    Meng, Xiaojing
    NEUROCOMPUTING, 2020, 400 : 24 - 33
  • [2] Semantic consistency hashing for cross-modal retrieval
    Yao, Tao
    Kong, Xiangwei
    Fu, Haiyan
    Tian, Qi
    NEUROCOMPUTING, 2016, 193 : 250 - 259
  • [3] Discrete Fusion Adversarial Hashing for cross-modal retrieval
    Li, Jing
    Yu, En
    Ma, Jianhua
    Chang, Xiaojun
    Zhang, Huaxiang
    Sun, Jiande
    KNOWLEDGE-BASED SYSTEMS, 2022, 253
  • [4] Generalized Semantic Preserving Hashing for Cross-Modal Retrieval
    Mandal, Devraj
    Chaudhury, Kunal N.
    Biswas, Soma
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2019, 28 (01) : 102 - 112
  • [5] Semantic-Guided Hashing for Cross-Modal Retrieval
    Chen, Zhikui
    Du, Jianing
    Zhong, Fangming
    Chen, Shi
    2019 IEEE FIFTH INTERNATIONAL CONFERENCE ON BIG DATA COMPUTING SERVICE AND APPLICATIONS (IEEE BIGDATASERVICE 2019), 2019, : 182 - 190
  • [6] SEMANTIC PRESERVING GENERATIVE ADVERSARIAL NETWORK FOR CROSS-MODAL HASHING
    Wu, Fei
    Luo, Xiaokai
    Huang, Qinghua
    Wei, Pengfei
    Sun, Ying
    Dong, Xiwei
    Wu, Zhiyong
    2021 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2021, : 2743 - 2747
  • [7] Adversarial Projection Learning Based Hashing for Cross-Modal Retrieval
    Zeng C.
    Bai C.
    Ma Q.
    Chen S.
    Jisuanji Fuzhu Sheji Yu Tuxingxue Xuebao/Journal of Computer-Aided Design and Computer Graphics, 2021, 33 (06): : 904 - 912
  • [8] DEEP SEMANTIC ADVERSARIAL HASHING BASED ON AUTOENCODER FOR LARGE-SCALE CROSS-MODAL RETRIEVAL
    Li, Mingyong
    Wang, Hongya
    2020 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO WORKSHOPS (ICMEW), 2020,
  • [9] Semantic-guided autoencoder adversarial hashing for large-scale cross-modal retrieval
    Mingyong Li
    Qiqi Li
    Yan Ma
    Degang Yang
    Complex & Intelligent Systems, 2022, 8 : 1603 - 1617
  • [10] Semantic-guided autoencoder adversarial hashing for large-scale cross-modal retrieval
    Li, Mingyong
    Li, Qiqi
    Ma, Yan
    Yang, Degang
    COMPLEX & INTELLIGENT SYSTEMS, 2022, 8 (02) : 1603 - 1617