High-Temperature Nitriding Kinetics of Zr-U-Based Alloys

被引:0
作者
Kovalev, I. A. [1 ]
Kochanov, G. P. [1 ]
L'vov, L. O. [1 ]
Zufman, V. Yu. [1 ]
Ogarkov, A. I. [1 ]
Shornikov, D. P. [1 ,2 ]
Tarasov, B. A. [1 ,2 ]
Konovalov, A. A. [1 ]
Shokod'ko, A. V. [1 ]
Strel'nikova, S. S. [1 ]
Chernyavskii, A. S. [1 ]
Solntsev, K. A. [1 ]
机构
[1] Russian Acad Sci, Baikov Inst Met & Mat Sci, Moscow, Russia
[2] Natl Res Nucl Univ MEPhI, Moscow, Russia
来源
RUSSIAN METALLURGY | 2023年 / 2023卷 / 05期
基金
俄罗斯科学基金会;
关键词
zirconium nitride; ceramics; (Zr; U) solid solution; nitriding; saturation kinetics; oxidation engineering; NITRIDATION; ZIRCONIUM; CERAMICS; HARDNESS;
D O I
10.1134/S0036029523050038
中图分类号
TF [冶金工业];
学科分类号
0806 ;
摘要
The kinetic laws of nitride formation are revealed. The sequence of structural transformations characterizing high-temperature (at 1900 degrees C) nitriding of Zr-U alloys with 2 and 5 wt % U in the range 3.560 min is presented. For each composition, high-temperature nitrogen saturation results in the decomposition of a (Zr,U) solid solution to form ZrN-(ZrN1 - n/UxEy/U)-ZrN composite structures (where E = O, N; n, x, y are stoichiometric coefficients). The decomposition of the solid solution gives rise to zirconium nitride and metallic uranium. The latter accumulates impurities, which are present in the initial solid solution, in the central part of the sample. The kinetic curves for a temperature of 1900 degrees C are approximated by an exponential law and correspond to zirconium nitriding. The nitriding rate of the (Zr,U) solid solution increases with the uranium content. To complete the formation of a compact solid solution nitride (Zr,U)N of a stoichiometric composition, the reaction temperature and time should be increased.
引用
收藏
页码:606 / 612
页数:7
相关论文
共 17 条
[1]   Bulk titanium nitride ceramics - Significant enhancement of hardness by silicon nitride addition, nanostructuring and high pressure sintering [J].
Blaess, U. W. ;
Barsukova, T. ;
Schwarz, M. R. ;
Koehler, A. ;
Schimpf, C. ;
Petrusha, I. A. ;
Muehle, U. ;
Rafaja, D. ;
Kroke, E. .
JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2015, 35 (10) :2733-2744
[2]   Facile Preparation of Mesoporous Titanium Nitride Microspheres for Electrochemical Energy Storage [J].
Dong, Shanmu ;
Chen, Xiao ;
Gu, Lin ;
Zhou, Xinhong ;
Xu, Hongxia ;
Wang, Haibo ;
Liu, Zhihong ;
Han, Pengxian ;
Yao, Jianhua ;
Wang, Li ;
Cui, Guanglei ;
Chen, Liquan .
ACS APPLIED MATERIALS & INTERFACES, 2011, 3 (01) :93-98
[3]  
Hollmer T., 2011, Student Thesis
[4]  
Kinev E. A., 2021, Vopr. At. Nauki Tekh. Ser. Materialoved. Nov. Mater., P85
[5]   Compositional evolution of zirconium and niobium in the process of high-temperature nitridation of Zr-Nb alloys [J].
Kovalev, Ivan A. ;
Kochanov, German P. ;
L'vov, Leonid O. ;
Shevtsov, Sergey V. ;
Kannikin, Sergey V. ;
Sitnikov, Alexey N. ;
Strel'nikova, Svetlana S. ;
Chernyavskii, Andrey S. ;
Solntsev, Konstantin A. .
MENDELEEV COMMUNICATIONS, 2022, 32 (04) :498-500
[6]  
[Кривов М.П. Krivov M.P.], 2019, [Атомная энергия, Atomnaya energiya], V127, P25
[7]   Kinetics of zirconium saturation with nitrogen during high-temperature nitridation [J].
Kuznetsov, K. B. ;
Kovalev, I. A. ;
Zufman, V. Yu ;
Ogarkov, A. I. ;
Shevtsov, S. V. ;
Ashmarin, A. A. ;
Chernyavskii, A. S. ;
Solntsev, K. A. .
INORGANIC MATERIALS, 2016, 52 (06) :558-560
[8]   Structure and hardness of ceramics produced through high-temperature nitridation of zirconium foil [J].
Kuznetsov, K. B. ;
Shashkeev, K. A. ;
Shevtsov, S. V. ;
Ogarkov, A. I. ;
Tretyakov, N. N. ;
Saprina, M. P. ;
Kostyuchenko, A. V. ;
Chernyavskii, A. S. ;
Ievlev, V. M. ;
Solntsev, K. A. .
INORGANIC MATERIALS, 2015, 51 (08) :820-827
[9]   Zirconium nitride (ZrN) fibers prepared by carbothermal reduction and nitridation of electrospun PVP/zirconium oxychloride composite fibers [J].
Li, J. Y. ;
Sun, Y. ;
Tan, Y. ;
Xu, F. M. ;
Shi, X. L. ;
Ren, N. .
CHEMICAL ENGINEERING JOURNAL, 2008, 144 (01) :149-152
[10]  
Powder Diffraction File, 1997, Alphabetical Index Inorganic Compounds