A Bayesian survival treed hazards model using latent Gaussian processes

被引:0
作者
Payne, Richard D. [1 ]
Guha, Nilabja [2 ]
Mallick, Bani K. [3 ]
机构
[1] Eli Lilly & Co, Lilly Corp Ctr, Indianapolis, IN 46285 USA
[2] Univ Massachusetts Lowell, Dept Math Sci, One Univ Ave, Lowell, MA 01852 USA
[3] Texas A&M Univ, Dept Stat, 3143 TAMU, College Stn, TX 77843 USA
基金
美国国家科学基金会;
关键词
hazards models; laplace approximation; reversible jump MCMC; survival analysis; time-to-event data; tree partitions; ACCELERATED FAILURE-TIME; PROPORTIONAL HAZARDS; REGRESSION; BIOMARKERS; INFERENCE;
D O I
10.1093/biomtc/ujad009
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Survival models are used to analyze time-to-event data in a variety of disciplines. Proportional hazard models provide interpretable parameter estimates, but proportional hazard assumptions are not always appropriate. Non-parametric models are more flexible but often lack a clear inferential framework. We propose a Bayesian treed hazards partition model that is both flexible and inferential. Inference is obtained through the posterior tree structure and flexibility is preserved by modeling the log-hazard function in each partition using a latent Gaussian process. An efficient reversible jump Markov chain Monte Carlo algorithm is accomplished by marginalizing the parameters in each partition element via a Laplace approximation. Consistency properties for the estimator are established. The method can be used to help determine subgroups as well as prognostic and/or predictive biomarkers in time-to-event data. The method is compared with some existing methods on simulated data and a liver cirrhosis dataset.
引用
收藏
页数:8
相关论文
共 58 条
  • [1] Bayesian ensemble methods for survival prediction in gene expression data
    Bonato, Vinicius
    Baladandayuthapani, Veerabhadran
    Broom, Bradley M.
    Sulman, Erik P.
    Aldape, Kenneth D.
    Do, Kim-Anh
    [J]. BIOINFORMATICS, 2011, 27 (03) : 359 - 367
  • [2] A review of survival trees
    Bou-Hamad, Imad
    Larocque, Denis
    Ben-Ameur, Hatem
    [J]. STATISTICS SURVEYS, 2011, 5 : 44 - 71
  • [3] Random forests
    Breiman, L
    [J]. MACHINE LEARNING, 2001, 45 (01) : 5 - 32
  • [4] Random forests
    Breiman, L
    [J]. MACHINE LEARNING, 2001, 45 (01) : 5 - 32
  • [5] Breiman L., 1984, Classification and Regression Trees, DOI 10.1201/9781315139470
  • [6] Henderson NC, 2017, Arxiv, DOI [arXiv:1706.06611, 10.48550/arXiv.1706.06611, DOI 10.48550/ARXIV.1706.06611]
  • [7] Bayesian CART model search
    Chipman, HA
    George, EI
    McCulloch, RE
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1998, 93 (443) : 935 - 948
  • [8] BART: BAYESIAN ADDITIVE REGRESSION TREES
    Chipman, Hugh A.
    George, Edward I.
    McCulloch, Robert E.
    [J]. ANNALS OF APPLIED STATISTICS, 2010, 4 (01) : 266 - 298
  • [9] CHRISTENSEN R, 1988, BIOMETRIKA, V75, P693
  • [10] CIAMPI A, 1981, CANCER-AM CANCER SOC, V47, P621, DOI 10.1002/1097-0142(19810201)47:3<621::AID-CNCR2820470333>3.0.CO