A multiclass extreme gradient boosting model for evaluation of transcriptomic biomarkers in Alzheimer's disease prediction

被引:3
作者
Zhang, Yi [1 ]
Shen, Shasha [1 ]
Li, Xiaokai [1 ]
Wang, Songlin [2 ]
Xiao, Zongni [2 ]
Cheng, Jun [2 ]
Li, Ruifeng [1 ]
机构
[1] Panzhihua Univ, Inst Neurosci, Panzhihua 617000, Peoples R China
[2] Panzhihua Univ, Med Coll, Panzhihua 617000, Peoples R China
关键词
Blood transcriptomic biomarkers; Multiclass classification; Alzheimer's disease; EXtreme Gradient Boosting; Machine learning; GENE-EXPRESSION; IMMUNE; DIAGNOSIS;
D O I
10.1016/j.neulet.2023.137609
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Background: Patients with young-onset Alzheimer's disease (AD) (before the age of 50 years old) often lack obvious imaging changes and amyloid protein deposition, which can lead to misdiagnosis with other cognitive impairments. Considering the association between immunological dysfunction and progression of neurodegenerative disease, recent research has focused on identifying blood transcriptomic signatures for precise prediction of AD. Methods: In this study, we extracted blood biomarkers from large-scale transcriptomics to construct multiclass eXtreme Gradient Boosting models (XGBoost), and evaluated their performance in distinguishing AD from cognitive normal (CN) and mild cognitive impairment (MCI). Results: Independent testing with external dataset revealed that the combination of blood transcriptomic signatures achieved an area under the receiver operating characteristic curve (AUC of ROC) of 0.81 for multiclass classification (sensitivity = 0.81; specificity = 0.63), 0.83 for classification of AD vs. CN (sensitivity = 0.72; specificity = 0.73), and 0.85 for classification of AD vs. MCI (sensitivity = 0.77; specificity = 0.73). These candidate signatures were significantly enriched in 62 chromosome regions, such as Chr.19p12-19p13.3, Chr.1p22.1-1p31.1, and Chr.1q21.2-1p23.1 (adjusted p < 0.05), and significantly overrepresented by 26 transcription factors, including E2F2, FOXO3, and GATA1 (adjustedp < 0.05). Biological analysis of these signatures pointed to systemic dysregulation of immune responses, hematopoiesis, exocytosis, and neuronal support in neurodegenerative disease (adjusted p < 0.05). Conclusions: Blood transcriptomic biomarkers hold great promise in clinical use for the accurate assessment and prediction of AD.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Imaging and biomarkers for Alzheimer's disease
    Allan, Charlotte L.
    Sexton, Claire E.
    Welchew, David
    Ebmeier, Klaus P.
    MATURITAS, 2010, 65 (02) : 138 - 142
  • [32] Tear Biomarkers and Alzheimer's Disease
    Kastelan, Snjezana
    Bras, Marijana
    Pjevac, Neda
    Bakija, Ivana
    Tomic, Zora
    Pjevac Keleminic, Nada
    Antunica, Antonela Gverovic
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2023, 24 (17)
  • [33] Plasma biomarkers and genetics in the diagnosis and prediction of Alzheimer's disease
    Stevenson-Hoare, Joshua
    Heslegrave, Amanda
    Leonenko, Ganna
    Fathalla, Dina
    Bellou, Eftychia
    Luckcuck, Lauren
    Marshall, Rachel
    Sims, Rebecca
    Morgan, Bryan Paul
    Hardy, John
    de Strooper, Bart
    Williams, Julie
    Zetterberg, Henrik
    Escott-Price, Valentina
    BRAIN, 2023, 146 (02) : 690 - 699
  • [34] EXTREME GRADIENT BOOSTING (XGBOOST) MODEL FOR VEHICLE TRAJECTORY PREDICTION IN CONNECTED AND AUTONOMOUS VEHICLE ENVIRONMENT
    Liu, Pengfei
    Fan, Wei
    PROMET-TRAFFIC & TRANSPORTATION, 2021, 33 (05): : 767 - 774
  • [35] Plasma biomarkers for prediction of Alzheimer’s disease neuropathologic change
    Camilo Bermudez
    Jonathan Graff-Radford
    Jeremy A. Syrjanen
    Nikki H. Stricker
    Alicia Algeciras-Schimnich
    Naomi Kouri
    Walter K. Kremers
    Ronald C. Petersen
    Clifford R. Jack
    David S. Knopman
    Dennis W. Dickson
    Aivi T. Nguyen
    R. Ross Reichard
    Melissa E. Murray
    Michelle M. Mielke
    Prashanthi Vemuri
    Acta Neuropathologica, 2023, 146 : 13 - 29
  • [36] An energy consumption prediction model for electric buses based on extreme gradient boosting fusion algorithm
    Kang, Yiting
    Wei, Jianshu
    Liu, Zhihua
    Xiao, Ke
    INTERNATIONAL JOURNAL OF GREEN ENERGY, 2025,
  • [37] Development of an Extreme Gradient Boosting Model Integrated With Evolutionary Algorithms for Hourly Water Level Prediction
    Nguyen, Duc Hai
    Hien Le, Xuan
    Heo, Jae-Yeong
    Bae, Deg-Hyo
    IEEE ACCESS, 2021, 9 : 125853 - 125867
  • [38] Prediction and classification of solar photovoltaic power generation using extreme gradient boosting regression model
    Rinesh, S.
    Deepa, S.
    Nandan, R. T.
    Sachin, R. S.
    Thamil, S., V
    Akash, R.
    Arun, M.
    Prajitha, C.
    Kumar, A. P. Senthil
    INTERNATIONAL JOURNAL OF LOW-CARBON TECHNOLOGIES, 2024, 19 : 2420 - 2430
  • [39] Plasma biomarkers for prediction of Alzheimer's disease neuropathologic change
    Bermudez, Camilo
    Graff-Radford, Jonathan
    Syrjanen, Jeremy A.
    Stricker, Nikki H.
    Algeciras-Schimnich, Alicia
    Kouri, Naomi
    Kremers, Walter K.
    Petersen, Ronald C.
    Jack, Clifford R.
    Knopman, David S.
    Dickson, Dennis W.
    Nguyen, Aivi T.
    Reichard, R. Ross
    Murray, Melissa E.
    Mielke, Michelle M.
    Vemuri, Prashanthi
    ACTA NEUROPATHOLOGICA, 2023, 146 (01) : 13 - 29
  • [40] Construction and Validation of a Predictive Model for Coronary Artery Disease Using Extreme Gradient Boosting
    Zhang, Zheng
    Shao, Binbin
    Liu, Hongzhou
    Huang, Ben
    Gao, Xuechen
    Qiu, Jun
    Wang, Chen
    JOURNAL OF INFLAMMATION RESEARCH, 2024, 17 : 4163 - 4174