Machine-learning-based mapping of blood oxygen saturation from dual-wavelength optoacoustic measurements

被引:0
作者
Kurakina, D. A.
Kirillin, M. Yu
Khilov, A., V
Perekatova, V. V.
机构
基金
俄罗斯科学基金会;
关键词
optoacoustic imaging; Monte Carlo simulations; machine learning; blood oxygen saturation mapping;
D O I
10.1088/1612-202X/ad1aa4
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We developed a novel machine-learning-based algorithm based on a gradient boosting regressor for three-dimensional pixel-by-pixel mapping of blood oxygen saturation based on dual-wavelength optoacoustic data. Algorithm training was performed on in silico data produced from Monte-Carlo-generated absorbed light energy distributions in tissue-like vascularized media for probing wavelengths of 532 and 1064 nm and the empirical instrumental function of the optoacoustic imaging setup with further validation of the independent in silico data. In vivo optoacoustic data for rabbit-ear vasculature was employed as a testing dataset. The developed algorithm allowed in vivo blood oxygen saturation mapping and showed clear differences in blood oxygen saturation values in veins at 15 degrees C and 43 degrees C due to functional arteriovenous anastomoses. These results indicated that dual-wavelength optoacoustic imaging could serve as a cost-effective alternative to complicated multiwavelength quantitative optoacoustic imaging.
引用
收藏
页数:10
相关论文
共 25 条
  • [1] Measuring blood oxygen saturation along a capillary vessel in human
    Akons, Kfir
    Dann, Eldad J.
    Yelin, Dvir
    [J]. BIOMEDICAL OPTICS EXPRESS, 2017, 8 (11): : 5342 - 5348
  • [2] Toward accurate quantitative photoacoustic imaging: learning vascular blood oxygen saturation in three dimensions
    Bench, Ciaran
    Hauptmann, Andreas
    Cox, Ben
    [J]. JOURNAL OF BIOMEDICAL OPTICS, 2020, 25 (08)
  • [3] A literature review and novel theoretical approach on the optical properties of whole blood
    Bosschaart, Nienke
    Edelman, Gerda J.
    Aalders, Maurice C. G.
    van Leeuwen, Ton G.
    Faber, Dirk J.
    [J]. LASERS IN MEDICAL SCIENCE, 2014, 29 (02) : 453 - 479
  • [4] End-to-end deep neural network for optica l inversion in quantitative photoacoustic imaging
    Cai, Chuangjian
    Deng, Kexin
    Ma, Cheng
    Luo, Jianwen
    [J]. OPTICS LETTERS, 2018, 43 (12) : 2752 - 2755
  • [5] Quantitative spectroscopic photoacoustic imaging: a review
    Cox, Ben
    Laufer, Jan G.
    Arridge, Simon R.
    Beard, Paul C.
    [J]. JOURNAL OF BIOMEDICAL OPTICS, 2012, 17 (06)
  • [6] Deep learning in photoacoustic imaging: a review
    Deng, Handi
    Qiao, Hui
    Dai, Qionghai
    Ma, Cheng
    [J]. JOURNAL OF BIOMEDICAL OPTICS, 2021, 26 (04)
  • [7] Learned spectral decoloring enables photoacoustic oximetry
    Groehl, Janek
    Kirchner, Thomas
    Adler, Tim J.
    Hacker, Lina
    Holzwarth, Niklas
    Hernandez-Aguilera, Adrian
    Herrera, Mildred A.
    Santos, Edgar
    Bohndiek, Sarah E.
    Maier-Hein, Lena
    [J]. SCIENTIFIC REPORTS, 2021, 11 (01)
  • [8] Deep learning for biomedical photoacoustic imaging: A review
    Groehl, Janek
    Schellenberg, Melanie
    Dreher, Kris
    Maier-Hein, Lena
    [J]. PHOTOACOUSTICS, 2021, 22
  • [9] Machine learning enabled multiple illumination quantitative optoacoustic oximetry imaging in humans
    Kirchner, Thomas
    Jaeger, Michael
    Frenz, Martin
    [J]. BIOMEDICAL OPTICS EXPRESS, 2022, 13 (05) : 2655 - 2667
  • [10] Multiple illumination learned spectral decoloring for quantitative optoacoustic oximetry imaging
    Kirchner, Thomas
    Frenz, Martin
    [J]. JOURNAL OF BIOMEDICAL OPTICS, 2021, 26 (08)