An Empirical Evaluation of Machine Learning Techniques for Crop Prediction

被引:3
|
作者
Mariammal, G. [1 ]
Suruliandi, A. [2 ]
Raja, S. P. [3 ]
Poongothai, E. [4 ]
机构
[1] Vel Tech Rangarajan Dr Sagunthala R&D Inst Sci & T, Dept Comp Sci & Engn, Chennai 600062, Tamil Nadu, India
[2] Manonmaniam Sundaranar Univ, Dept Comp Sci & Engn, Tirunelveli 627012, Tamil Nadu, India
[3] Vellore Inst Technol, Sch Comp Sci & Engn, Vellore, Tamil Nadu, India
[4] SRM Inst Sci & Technol, Dept Comp Sci & Engn, Chennai, Tamil Nadu, India
关键词
Classification; Crop Prediction; Environmental Characteristics; Machine Learning; Soil Characteristics;
D O I
10.9781/ijimai.2022.12.004
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Agriculture is the primary source driving the economic growth of every country worldwide. Crop prediction, which is critical to agriculture, depends on the soil and environment. Nutrient levels differ from area to area and greatly influence in crop cultivation. Earlier, the tasks of crop forecast and cultivation were undertaken by farmers themselves. Today, however, crop prediction is determined by climatic variations. This is where machine learning algorithms step in to identify the most relevant crop for cultivation. This research undertakes an empirical analysis using the bagging, random forest, support vector machine, decision tree, Naive Bayes and k-nearest neighbor classifiers to predict the most appropriate cultivable crop for certain areas, based on environment and soil traits. Further, the suitability of the classifiers is examined using a GitHub prisoners' dataset. The experimental results of all the classification techniques were assessed to show that the ensemble outclassed the rest with respect to every performance metric.
引用
收藏
页码:96 / 104
页数:217
相关论文
共 50 条
  • [41] Bankruptcy Prediction Using Machine Learning Techniques
    Shetty, Shekar
    Musa, Mohamed
    Bredart, Xavier
    JOURNAL OF RISK AND FINANCIAL MANAGEMENT, 2022, 15 (01)
  • [42] Machine learning and balanced techniques for diabetes prediction
    Narvaez, Liliana
    Reategui, Ruth
    2023 FOURTH INTERNATIONAL CONFERENCE ON INFORMATION SYSTEMS AND SOFTWARE TECHNOLOGIES, ICI2ST 2023, 2023, : 68 - 73
  • [43] Stroke Risk Prediction with Machine Learning Techniques
    Dritsas, Elias
    Trigka, Maria
    SENSORS, 2022, 22 (13)
  • [44] Prediction of hypercholesterolemia using machine learning techniques
    Pooyan Moradifar
    Mohammad Meskarpour Amiri
    Journal of Diabetes & Metabolic Disorders, 2023, 22 : 255 - 265
  • [45] Machine learning techniques for dental disease prediction
    Iffat Firozy Rimi
    Md. Ariful Islam Arif
    Sharmin Akter
    Md. Riazur Rahman
    A. H. M. Saiful Islam
    Md. Tarek Habib
    Iran Journal of Computer Science, 2022, 5 (3) : 187 - 195
  • [46] Emotion Prediction using Machine Learning Techniques
    Shamsi, Areeba
    Nasir, Sabika
    Hajiani, Mishaal Amin
    Ejaz, Afshan
    Ali, Syed Asim
    INTERNATIONAL JOURNAL OF COMPUTER SCIENCE AND NETWORK SECURITY, 2019, 19 (06): : 166 - 172
  • [47] Diabetes Prediction using Machine Learning Techniques
    Obulesu, O.
    Suresh, K.
    Ramudu, B. Venkata
    HELIX, 2020, 10 (02): : 136 - 142
  • [48] Prediction of hypercholesterolemia using machine learning techniques
    Moradifar, Pooyan
    Amiri, Mohammad Meskarpour
    JOURNAL OF DIABETES AND METABOLIC DISORDERS, 2023, 22 (01) : 255 - 265
  • [49] Machine learning techniques for protein function prediction
    Bonetta, Rosalin
    Valentino, Gianluca
    PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 2020, 88 (03) : 397 - 413
  • [50] An empirical comparison of machine learning techniques for chant classification
    Kokkinidis, K.
    Mastoras, T.
    Tsagaris, A.
    Fotaris, P.
    2018 7TH INTERNATIONAL CONFERENCE ON MODERN CIRCUITS AND SYSTEMS TECHNOLOGIES (MOCAST), 2018,