In-situ reconstructed Cu/Cu2O heterogeneous nanorods with oxygen vacancies for enhanced electrocatalytic nitrate reduction to ammonia

被引:48
|
作者
Shi, Yan [1 ]
Li, Yumeng [1 ]
Li, Rujin [1 ]
Zhao, Xiaogang [2 ]
Yu, Yanling [1 ,3 ]
Yang, Min [1 ]
机构
[1] Harbin Inst Technol, Sch Chem & Chem Engn, MIIT Key Lab Crit Mat Technol New Energy Convers &, Harbin 150001, Peoples R China
[2] Jilin Univ, Coll Chem, Changchun 130012, Peoples R China
[3] Harbin Inst Technol, Zhengzhou Res Inst, Zhengzhou 450000, Peoples R China
基金
中国国家自然科学基金;
关键词
In-situ Reconstruction; Cu/Cu2O; Atomic hydrogen; Heterogeneous interfaces; Nitrate to Ammonia; GENERALIZED GRADIENT APPROXIMATION; ELECTROCHEMICAL REDUCTION; CARBON-DIOXIDE; COPPER; WATER; EFFICIENT; REMOVAL; MECHANISM; CU(OH)(2); EXCHANGE;
D O I
10.1016/j.cej.2023.147574
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Electrocatalytic nitrate reduction to ammonia (ENRA) is crucial for environmental pollution treatment and sustainable energy development, but the complicated reduction mechanism of ENRA leads to limited ammonia selectivity and low Faradaic efficiency. In this work, Cu/Cu2O heterogeneous nanorods with oxygen vacancies were successfully obtained by creating Cu sites via the in-situ reconstruction of Cu2O nanorods. These oxygen vacancies can weaken the N-O bond. The Cu sites and heterogeneous interfaces were investigated using X-ray photoelectron spectroscopy Auger spectra and transmission electron microscopy. The active species trapping experiments and density functional theory (DFT) calculations demonstrated that the Cu sites promoted the reduction of NO3- to NO2- due to their strong adsorption of NO3-, and the sufficient atomic hydrogen originating from Cu2O facilitated the formation of a *NOH intermediate. In addition, abundant heterogeneous interfaces facilitated the reduction of N-containing intermediates by atomic hydrogen, leading to a high Faradaic efficiency of 84.93 % and ammonia yield of 4.58 mg/h/cm(2) in neutral solution. Our findings will diversify the methodologies for constructing Cu/Cu2O electrocatalysts and provide new insight into the mechanism of ammonia synthesis from nitrate reduction.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] In-situ decoration of unsaturated Cu sites on Cu2O photocathode for boosting nitrogen reduction reaction
    Liu, Ying
    Bai, Hongye
    Zhang, Qianxiao
    Bai, Yajie
    Pang, Xuliang
    Wang, Fagen
    Yang, Yingchen
    Ding, Jinrui
    Fan, Weiqiang
    Shi, Weidong
    CHEMICAL ENGINEERING JOURNAL, 2021, 413
  • [22] Tuning mobility of intermediate and electron transfer to enhance electrochemical reduction of nitrate to ammonia on Cu2O/Cu interface
    Fu, Wenyang
    Hu, Zhongzheng
    Zheng, Yang
    Su, Pei
    Zhang, Qizhan
    Jiao, Yongli
    Zhou, Minghua
    CHEMICAL ENGINEERING JOURNAL, 2022, 433
  • [23] Surface-Reconstructed Copper Foil Free-Standing Electrode with Nanoflower Cu/Ce2O3 by In Situ Electrodeposition Reduction for Electrocatalytic Nitrate Reduction to Ammonia
    Li, Dan
    Wang, Fei
    Mao, Jian
    INORGANIC CHEMISTRY, 2023, 62 (40) : 16283 - 16287
  • [24] In Situ Loading of Cu2O Active Sites on Island-like Copper for Efficient Electrochemical Reduction of Nitrate to Ammonia
    Wang, Chaochen
    Ye, Fan
    Shen, Jianhua
    Xue, Kan-Hao
    Zhu, Yihua
    Li, Chunzhong
    ACS APPLIED MATERIALS & INTERFACES, 2022, 14 (05) : 6680 - 6688
  • [25] Structure-Dependent Electrocatalytic Properties of Cu2O Nanocrystals for Oxygen Reduction Reaction
    Li, Qing
    Xu, Ping
    Zhang, Bin
    Tsai, Hsinhan
    Zheng, Shijian
    Wu, Gang
    Wang, Hsing-Lin
    JOURNAL OF PHYSICAL CHEMISTRY C, 2013, 117 (27): : 13872 - 13878
  • [26] Electrocatalytic Reduction of Nitrate to Ammonia by Cu–Sn Alloy Cathode
    Weichun Dan Li
    Cong Gao
    Jiyan Geng
    Libao Liang
    Journal of Water Chemistry and Technology, 2022, 44 : 335 - 343
  • [27] Selective electrocatalytic reduction of nitrate to dinitrogen by Cu2O nanowires with mixed oxidation-state
    Feng, Tao
    Wang, Jing
    Wang, Ying
    Yu, Chaofan
    Zhou, Xiao
    Xu, Bincheng
    Laszlo, Krisztina
    Li, Fengting
    Zhang, Weixian
    CHEMICAL ENGINEERING JOURNAL, 2022, 433
  • [28] Pd-dispersed Cu2O/Cu Catalysts for Electrochemical Nitrate Reduction
    Feng Guo
    Chenxin Xie
    Hui Zhao
    Yang Gao
    Houkai Teng
    Enshan Han
    Catalysis Letters, 2024, 154 : 1782 - 1794
  • [29] Pd-dispersed Cu2O/Cu Catalysts for Electrochemical Nitrate Reduction
    Guo, Feng
    Xie, Chenxin
    Zhao, Hui
    Gao, Yang
    Teng, Houkai
    Han, Enshan
    CATALYSIS LETTERS, 2024, 154 (04) : 1782 - 1794
  • [30] Cu2+1O/Ag Heterostructure for Boosting the Electrocatalytic Nitrate Reduction to Ammonia Performance
    Liu, Yang
    Yao, Xiao-Man
    Liu, Xu
    Liu, Zhiliang
    Wang, Yan-Qin
    INORGANIC CHEMISTRY, 2023, 62 (19) : 7525 - 7532