Sharp boundary regularity for some degenerate-singular Monge-Ampère equations on k-convex domain

被引:4
作者
Jian, Huaiyu [1 ]
Wang, Xianduo [2 ]
机构
[1] Beijing Technol & Business Univ, Sch Math & Stat, Beijing, Peoples R China
[2] Tsinghua Univ, Dept Math Sci, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
Boundary estimate; Monge-Ampere type equation; Anisotropic convexity; Singular and degenerate elliptic equation; MONGE-AMPERE; DIRICHLET PROBLEM;
D O I
10.1016/j.jde.2023.11.007
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce the concept of k-strictly convexity to describe the accurate convexity of convex domains some directions of which boundary may be flat. Basing this accurate convexity we construct sub-solutions for the Dirichlet problem of some degenerate-singular Monge-Ampere type equations and prove the sharp boundary estimates for convex viscosity solutions of the problem. As a result, we obtain the optimal global Holder regularity of the convex viscosity solutions. (c) 2023 Elsevier Inc. All rights reserved.
引用
收藏
页码:97 / 114
页数:18
相关论文
共 25 条
[21]   Affine Sphere Relativity [J].
Minguzzi, E. .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2017, 350 (02) :749-801
[22]  
Savin O, 2013, J AM MATH SOC, V26, P63
[23]   Boundary regularity for the Monge-Ampere and affine maximal surface equations [J].
Trudinger, Neil S. ;
Wang, Xu-Jia .
ANNALS OF MATHEMATICS, 2008, 167 (03) :993-1028
[24]   THE DIRICHLET PROBLEM FOR THE EQUATION OF PRESCRIBED GAUSS CURVATURE [J].
TRUDINGER, NS ;
URBAS, JIE .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1983, 28 (02) :217-231
[25]   GLOBAL HOLDER ESTIMATES FOR EQUATIONS OF MONGE-AMPERE TYPE [J].
URBAS, JIE .
INVENTIONES MATHEMATICAE, 1988, 91 (01) :1-29