Sharp boundary regularity for some degenerate-singular Monge-Ampère equations on k-convex domain

被引:4
作者
Jian, Huaiyu [1 ]
Wang, Xianduo [2 ]
机构
[1] Beijing Technol & Business Univ, Sch Math & Stat, Beijing, Peoples R China
[2] Tsinghua Univ, Dept Math Sci, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
Boundary estimate; Monge-Ampere type equation; Anisotropic convexity; Singular and degenerate elliptic equation; MONGE-AMPERE; DIRICHLET PROBLEM;
D O I
10.1016/j.jde.2023.11.007
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce the concept of k-strictly convexity to describe the accurate convexity of convex domains some directions of which boundary may be flat. Basing this accurate convexity we construct sub-solutions for the Dirichlet problem of some degenerate-singular Monge-Ampere type equations and prove the sharp boundary estimates for convex viscosity solutions of the problem. As a result, we obtain the optimal global Holder regularity of the convex viscosity solutions. (c) 2023 Elsevier Inc. All rights reserved.
引用
收藏
页码:97 / 114
页数:18
相关论文
共 25 条
[1]   THE DIRICHLET PROBLEM FOR NONLINEAR 2ND-ORDER ELLIPTIC-EQUATIONS .1. MONGE-AMPERE EQUATION [J].
CAFFARELLI, L ;
NIRENBERG, L ;
SPRUCK, J .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1984, 37 (03) :369-402
[2]  
Calabi E., 1972, S MATH, V10, P19
[3]   REGULARITY OF MONGE-AMPERE EQUATION DET (D2U/DXIDXJ) = F(X,U) [J].
CHENG, SY ;
YAU, ST .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1977, 30 (01) :41-68
[4]   COMPLETE AFFINE HYPERSURFACES .1. THE COMPLETENESS OF AFFINE METRICS [J].
CHENG, SY ;
YAU, ST .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1986, 39 (06) :839-866
[5]   The Lp-Minkowski problem and the Minkowski problem in centroaffine geometry [J].
Chou, Kai-Seng ;
Wang, Xu-Jia .
ADVANCES IN MATHEMATICS, 2006, 205 (01) :33-83
[6]  
Figalli A, 2017, ZUR LECT ADV MATH, P1, DOI 10.4171/170
[7]  
Grandall M.G, 1997, Lecture Notes in Math., CIME/CIME Found. Subser., V160, P1
[8]  
Gutierrez CristianE., 2001, MONGE AMPERE EQUATIO
[9]  
JIAN HY, 2021, METHODS APPL ANAL, V28, P371
[10]  
Jian H.Y, 1993, J. Differ. Geom., V38, P131