The Effect of the Layout of a Rigid Splitter Plate on the Flow-Induced Vibration of a Downstream Cylinder Subjected to Wake Flow

被引:3
|
作者
Ruan, Li [1 ]
Yu, Dingyong [1 ]
Bao, Jian [1 ]
Zhao, Jinxin [1 ]
机构
[1] Ocean Univ China, Coll Engn, Qingdao 266100, Peoples R China
基金
中国国家自然科学基金;
关键词
flow induced vibration; wake interference; splitter plate; computational fluid dynamic; CIRCULAR-CYLINDER; SQUARE CYLINDER; NUMERICAL-SIMULATION; DIFFERENT ANGLES; REYNOLDS-NUMBER; DRAG;
D O I
10.3390/jmse11112138
中图分类号
U6 [水路运输]; P75 [海洋工程];
学科分类号
0814 ; 081505 ; 0824 ; 082401 ;
摘要
In this study, the effect of additional positions of rigid splitter plates on the response characteristics of tandem cylinders at a Reynolds number of 150 and a fixed distance ratio of 5.0 was numerically investigated via the computational fluid dynamics (CFD) method. Four layouts for the cylinder-plate body, including a downstream cylinder (DC), a downstream cylinder-plate body with a wake side plate (DCP), a downstream plate-cylinder body with an incoming flow side plate (DPC), and a downstream plate-cylinder-plate body with a double-sided plate (DPCP), are considered. The results show that the splitter plate attached to the incoming flow side or the wake side can suppress the vibration of the downstream cylinder in a specific reduced velocity range (4.0 < U-r <= 10.0). Compared with the DC, the maximum response amplitude of the DPC and DCP in the lock-in region is reduced by 30.8% and 47.4%, and the lock-in bandwidth is also significantly narrower. The layer separation point of the upstream cylinder moves downstream upon adding splitter plates to both the incoming flow and wake sides, and the resulting splitter shear layer of the DPCP is completely parallel to the free flow, while the maximum response amplitude is reduced by 93.6%, which realizes the best effect of stream-induced vibration suppression.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Flow-induced vibration of a circular cylinder with rigid splitter plate
    Sahu, Tulsi Ram
    Furquan, Mohd
    Jaiswal, Yash
    Mittal, Sanjay
    JOURNAL OF FLUIDS AND STRUCTURES, 2019, 89 : 244 - 256
  • [2] Flow-induced vibration of a flexible splitter-plate in the wake of a stationary cylinder
    Mittal, Charu
    Sharma, Atul
    PHYSICS OF FLUIDS, 2021, 33 (11)
  • [3] FLOW-INDUCED VIBRATIONS OF A SQUARE CYLINDER WITH RIGID UPSTREAM SPLITTER PLATE
    Bhatt, Dhyey
    Krishnal, Nandipeta Vijay
    Joshi, Vaibhav
    PROCEEDINGS OF ASME 2024 43RD INTERNATIONAL CONFERENCE ON OCEAN, OFFSHORE AND ARCTIC ENGINEERING, OMAE2024, VOL 6, 2024,
  • [4] The roles of rigid splitter plates in flow-induced vibration of a circular cylinder
    Sun, Yuankun
    Wang, Jiasong
    Fan, Dixia
    Zheng, Hanxu
    Hu, Zhongming
    PHYSICS OF FLUIDS, 2022, 34 (11)
  • [5] Control of flow-induced vibration of a circular cylinder using a splitter plate
    Zeng, Lingwei
    Zhao, Fuwang
    Wang, Hanfeng
    Liu, Yang
    Tang, Hui
    PHYSICS OF FLUIDS, 2023, 35 (08)
  • [6] Control of flow-induced vibration of a circular cylinder with a porous splitter plate
    Chen, Jingle
    Wu, Jie
    OCEAN ENGINEERING, 2023, 281
  • [7] Effectiveness of Splitter Plate in Suppressing the Flow-Induced Vibration of a Circular Cylinder
    Kamarul'Arifin, Ilya Qurratu'Ain Binti
    Queny, L. K.
    Kang, H. S.
    Tan, L. K.
    bin Othman, Nor' Azizi
    Siow, C. L.
    2020 THE FIFTH INTERNATIONAL CONFERENCE ON BUILDING MATERIALS AND CONSTRUCTION (ICBMC 2020), 2020, 829
  • [9] Reduced-order Model for Flow-induced Vibration of Rotatable Circular Cylinder with Rigid Splitter Plate
    Lü, Lin
    Jin, Yan
    Pang, Dan
    Ship Building of China, 2020, 61 : 64 - 74
  • [10] Coupled responses of the flow-induced vibration and flow-induced rotation of a rigid cylinder-plate body
    Tang, Tao
    Zhu, Hongjun
    Xiao, Qing
    Chen, Quanyu
    Zhong, Jiawen
    Li, Yingmei
    Zhou, Tongming
    OCEAN ENGINEERING, 2023, 286