Predicting seizure recurrence after an initial seizure-like episode from routine clinical notes using large language models: a retrospective cohort study

被引:5
作者
Beaulieu-Jones, Brett K. [1 ,2 ,7 ]
Villamar, Mauricio F. [3 ]
Scordis, Phil
Bartmann, Ana Paula [4 ]
Ali, Waqar
Wissel, Benjamin [4 ,5 ]
Alsentzer, Emily [2 ]
de Jong, Johann [6 ]
Patra, Arijit
Kohane, Isaac
机构
[1] Univ Chicago, Dept Med, Chicago, IL USA
[2] Harvard Med Sch, Dept Biomed Informat, Boston, MA 02115 USA
[3] Brown Univ, Dept Neurol, Warren Alpert Med Sch, Providence, RI USA
[4] UCB, Brussels, Belgium
[5] Cincinnati Childrens Hosp Med Ctr, Div Biomed Informat, Cincinnati, OH USA
[6] UCB Biosci, Monheim, Germany
[7] Univ Chicago, Dept Med, Chicago, IL 60637 USA
来源
LANCET DIGITAL HEALTH | 2023年 / 5卷 / 12期
基金
美国国家卫生研究院;
关键词
1ST UNPROVOKED SEIZURE; ANTIEPILEPTIC DRUG-WITHDRAWAL; FEBRILE STATUS EPILEPTICUS; EPILEPSY; RISK; CHILDREN; RECOMMENDATIONS; MANAGEMENT; CHILDHOOD; OUTCOMES;
D O I
10.1016/S2589-7500(23)00179-6
中图分类号
R-058 [];
学科分类号
摘要
Background The evaluation and management of first-time seizure-like events in children can be difficult because these episodes are not always directly observed and might be epileptic seizures or other conditions (seizure mimics). We aimed to evaluate whether machine learning models using real-world data could predict seizure recurrence after an initial seizure-like event. Methods This retrospective cohort study compared models trained and evaluated on two separate datasets between Jan 1, 2010, and Jan 1, 2020: electronic medical records (EMRs) at Boston Children's Hospital and de-identified, patient-level, administrative claims data from the IBM MarketScan research database. The study population comprised patients with an initial diagnosis of either epilepsy or convulsions before the age of 21 years, based on International Classification of Diseases, Clinical Modification (ICD-CM) codes. We compared machine learning-based predictive modelling using structured data (logistic regression and XGBoost) with emerging techniques in natural language processing by use of large language models. Findings The primary cohort comprised 14 021 patients at Boston Children's Hospital matching inclusion criteria with an initial seizure-like event and the comparison cohort comprised 15 062 patients within the IBM MarketScan research database. Seizure recurrence based on a composite expert-derived definition occurred in 57% of patients at Boston Children's Hospital and 63% of patients within IBM MarketScan. Large language models with additional domain-specific and location-specific pre-training on patients excluded from the study (F1-score 0 center dot 826 [95% CI 0 center dot 817-0 center dot 835], AUC 0 center dot 897 [95% CI 0 center dot 875-0 center dot 913]) performed best. All large language models, including the base model without additional pre-training (F1-score 0 center dot 739 [95% CI 0 center dot 738-0 center dot 741], AUROC 0 center dot 846 [95% CI 0 center dot 826-0 center dot 861]) outperformed models trained with structured data. With structured data only, XGBoost outperformed logistic regression and XGBoost models trained with the Boston Children's Hospital EMR (logistic regression: F1-score 0 center dot 650 [95% CI 0 center dot 643-0 center dot 657], AUC 0 center dot 694 [95% CI 0 center dot 685-0 center dot 705], XGBoost: F1-score 0 center dot 679 [0 center dot 676-0 center dot 683], AUC 0 center dot 725 [0 center dot 717-0 center dot 734]) performed similarly to models trained on the IBM MarketScan database (logistic regression: F1-score 0 center dot 596 [0 center dot 590-0 center dot 601], AUC 0 center dot 670 [0 center dot 664-0 center dot 675], XGBoost: F1-score 0 center dot 678 [0 center dot 668-0 center dot 687], AUC 0 center dot 710 [0 center dot 703-0 center dot 714]). Interpretation Physician's clinical notes about an initial seizure-like event include substantial signals for prediction of seizure recurrence, and additional domain-specific and location-specific pre-training can significantly improve the performance of clinical large language models, even for specialised cohorts. Funding UCB, National Institute of Neurological Disorders and Stroke (US National Institutes of Health). Copyright (c) 2023 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 license.
引用
收藏
页码:E882 / E894
页数:13
相关论文
共 60 条
  • [51] Recommendations for optimal ICD codes to study neurologic conditions A systematic review
    St Germaine-Smith, Christine
    Metcalfe, Amy
    Pringsheim, Tamara
    Roberts, Jodie Irene
    Beck, Cynthia A.
    Hemmelgarn, Brenda R.
    McChesney, Jane
    Quan, Hude
    Jette, Nathalie
    [J]. NEUROLOGY, 2012, 79 (10) : 1049 - 1055
  • [52] Seizure mimics in children: An age-based approach
    Stainman, Rebecca S.
    Kossoff, Eric H.
    [J]. CURRENT PROBLEMS IN PEDIATRIC AND ADOLESCENT HEALTH CARE, 2020, 50 (12)
  • [53] Individualised prediction of drug resistance and seizure recurrence after medication withdrawal in people with juvenile myoclonic epilepsy: A systematic review and individual participant data meta-analysis
    Stevelink, Remi
    Al-Toma, Dania
    Jansen, Floor E.
    Lamberink, Herm J.
    Asadi-Pooya, Ali A.
    Farazdaghi, Mohsen
    Cacao, Goncalo
    Jayalakshmi, Sita
    Patil, Anuja
    Ozkara, Cigdem
    Aydin, Senay
    Gesche, Joanna
    Beier, Christoph P.
    Stephen, Linda J.
    Brodie, Martin J.
    Unnithan, Gopeekrishnan
    Radhakrishnan, Ashalatha
    Hofler, Julia
    Trinka, Eugen
    Krause, Roland
    Irelli, Emanuele Cerulli
    Di Bonaventura, Carlo
    Szaflarski, Jerzy P.
    Hernandez-Vanegas, Laura E.
    Moya-Alfaro, Monica L.
    Zhang, Yingying
    Zhou, Dong
    Pietrafusa, Nicola
    Specchio, Nicola
    Japaridze, Giorgi
    Beniczky, Sandor
    Janmohamed, Mubeen
    Kwan, Patrick
    Syvertsen, Marte
    Selmer, Kaja K.
    Vorderwulbecke, Bernd J.
    Holtkamp, Martin
    Viswanathan, Lakshminarayanapuram G.
    Sinha, Sanjib
    Baykan, Betul
    Altindag, Ebru
    von Podewils, Felix
    Schulz, Juliane
    Seneviratne, Udaya
    Viloria-Alebesque, Alejandro
    Karakis, Ioannis
    D'Souza, Wendyl J.
    Sander, Josemir W.
    Koeleman, Bobby P. C.
    Otte, Willem M.
    [J]. ECLINICALMEDICINE, 2022, 53
  • [54] A Prediction Model to Determine Childhood Epilepsy After 1 or More Paroxysmal Events
    van Diessen, Eric
    Lamberink, Herm J.
    Otte, Willem M.
    Doornebal, Nynke
    Brouwer, Oebele F.
    Jansen, Floor E.
    Braun, Kees P. J.
    [J]. PEDIATRICS, 2018, 142 (06)
  • [55] Vaswani A., 2017, P 31 C NEUR INF PROC, V30, P5999, DOI DOI 10.48550/ARXIV.1706.03762
  • [56] Severity of Epilepsy and Response to Antiseizure Medications in Individuals With Multiple Sclerosis
    Villamar, Mauricio F.
    Sarkis, Rani A.
    Pennell, Page
    Kohane, Isaac
    Beaulieu-Jones, Brett K.
    [J]. NEUROLOGY-CLINICAL PRACTICE, 2022, 12 (04) : E49 - E57
  • [57] Wilfong A, 2022, SEIZURES EPILEPSY CH
  • [58] Summary of recommendations for the management of infantile seizures: Task Force Report for the ILAE Commission of Pediatrics
    Wilmshurst, Jo M.
    Gaillard, William D.
    Vinayan, Kollencheri Puthenveettil
    Tsuchida, Tammy N.
    Plouin, Perrine
    Van Bogaert, Patrick
    Carrizosa, Jaime
    Elia, Maurizio
    Craiu, Dana
    Jovic, Nebojsa J.
    Nordli, Doug
    Hirtz, Deborah
    Wong, Virginia
    Glauser, Tracy
    Mizrahi, Eli M.
    Cross, J. Helen
    [J]. EPILEPSIA, 2015, 56 (08) : 1185 - 1197
  • [59] Wolf T, 2020, PROCEEDINGS OF THE 2020 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING: SYSTEM DEMONSTRATIONS, P38
  • [60] Utilizing a Pretrained Language Model (BERT) to Classify Preservice Physics Teachers' Written Reflections
    Wulff, Peter
    Mientus, Lukas
    Nowak, Anna
    Borowski, Andreas
    [J]. INTERNATIONAL JOURNAL OF ARTIFICIAL INTELLIGENCE IN EDUCATION, 2023, 33 (03) : 439 - 466