The fractional porous medium equation on noncompact Riemannian manifolds

被引:1
作者
Berchio, Elvise [1 ]
Bonforte, Matteo [2 ,3 ]
Grillo, Gabriele [4 ]
Muratori, Matteo [4 ]
机构
[1] Politecn Torino, Dipartimento Sci Matematiche, Corso Duca Abruzzi 24, I-10129 Turin, Italy
[2] Univ Autonoma Madrid, Dept Matemat, Campus Cantoblanco, Madrid 28049, Spain
[3] UCM, Inst Ciencias Matemat ICMAT, UAM UC3M, CSIC, Campus Cantoblanco, Madrid 28049, Spain
[4] Politecn Milan, Dipartimento Matemat, Piazza Leonardo Vinci 32, I-20133 Milan, Italy
基金
欧盟地平线“2020”;
关键词
DEGENERATE DIFFUSION-EQUATIONS; ASYMPTOTIC-BEHAVIOR; EXISTENCE; REGULARITY; UNIQUENESS; LAPLACIAN; KERNEL;
D O I
10.1007/s00208-023-02731-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study nonnegative solutions to the fractional porous medium equation on a suitable class of connected, noncompact Riemannian manifolds. We provide existence and smoothing estimates for solutions, in an appropriate weak (dual) sense, for data belonging either to the usual L-1 space or to a considerably larger weighted space determined in terms of the fractional Green function. The class of manifolds for which the results hold includes both the Euclidean and the hyperbolic spaces and even in the Euclidean situation involves a class of data which is larger than the previously known one.
引用
收藏
页码:3603 / 3651
页数:49
相关论文
共 47 条
[31]   POROUS MEDIA EQUATIONS WITH TWO WEIGHTS: SMOOTHING AND DECAY PROPERTIES OF ENERGY SOLUTIONS VIA POINCARE INEQUALITIES [J].
Grillo, Gabriele ;
Muratori, Matteo ;
Porzio, Maria Michaela .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2013, 33 (08) :3599-3640
[32]  
Hebey E, 1999, CIMS Lecture Notes, V5
[33]  
Jacob N, 2005, PSEUDO DIFFERENTIAL OPERATORS AND MARKOV PROCESSES, VOL III: MARKOV PROCESSES AND APPLICATIONS, P1, DOI 10.1142/9781860947155
[34]  
Jacob N., 2001, PSEUDO DIFFERENTIAL, VI
[35]   FRACTIONAL POWERS OF OPERATORS [J].
KOMATSU, H .
PACIFIC JOURNAL OF MATHEMATICS, 1966, 19 (02) :285-&
[36]   ON THE PARABOLIC KERNEL OF THE SCHRODINGER OPERATOR [J].
LI, P ;
YAU, ST .
ACTA MATHEMATICA, 1986, 156 (3-4) :153-201
[37]   Fundamental solution and long time behavior of the Porous Medium Equation in hyperbolic space [J].
Luis Vazquez, Juan .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2015, 104 (03) :454-484
[38]   Barenblatt solutions and asymptotic behaviour for a nonlinear fractional heat equation of porous medium type [J].
Luis Vazquez, Juan .
JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2014, 16 (04) :769-803
[39]  
Roidos N., EVOL EQU CONTROL THE, V22, P8, DOI DOI 10.3934/EECT.2021026
[40]   Smoothness and long time existence for solutions of the porous medium equation on manifolds with conical singularities [J].
Roidos, Nikolaos ;
Schrohe, Elmar .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2018, 43 (10) :1456-1484