The fractional porous medium equation on noncompact Riemannian manifolds

被引:1
作者
Berchio, Elvise [1 ]
Bonforte, Matteo [2 ,3 ]
Grillo, Gabriele [4 ]
Muratori, Matteo [4 ]
机构
[1] Politecn Torino, Dipartimento Sci Matematiche, Corso Duca Abruzzi 24, I-10129 Turin, Italy
[2] Univ Autonoma Madrid, Dept Matemat, Campus Cantoblanco, Madrid 28049, Spain
[3] UCM, Inst Ciencias Matemat ICMAT, UAM UC3M, CSIC, Campus Cantoblanco, Madrid 28049, Spain
[4] Politecn Milan, Dipartimento Matemat, Piazza Leonardo Vinci 32, I-20133 Milan, Italy
基金
欧盟地平线“2020”;
关键词
DEGENERATE DIFFUSION-EQUATIONS; ASYMPTOTIC-BEHAVIOR; EXISTENCE; REGULARITY; UNIQUENESS; LAPLACIAN; KERNEL;
D O I
10.1007/s00208-023-02731-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study nonnegative solutions to the fractional porous medium equation on a suitable class of connected, noncompact Riemannian manifolds. We provide existence and smoothing estimates for solutions, in an appropriate weak (dual) sense, for data belonging either to the usual L-1 space or to a considerably larger weighted space determined in terms of the fractional Green function. The class of manifolds for which the results hold includes both the Euclidean and the hyperbolic spaces and even in the Euclidean situation involves a class of data which is larger than the previously known one.
引用
收藏
页码:3603 / 3651
页数:49
相关论文
共 47 条
[1]  
Balakrishnan V., 1959, Trans. Am. Math., V91, P330
[2]   A nonlocal diffusion problem on manifolds [J].
Bandle, Catherine ;
del Mar Gonzalez, Maria ;
Fontelos, Marco A. ;
Wolanski, Noemi .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2018, 43 (04) :652-676
[3]   Some constructions for the fractional Laplacian on noncompact manifolds [J].
Banica, Valeria ;
del Mar Gonzalez, Maria ;
Saez, Mariel .
REVISTA MATEMATICA IBEROAMERICANA, 2015, 31 (02) :681-712
[4]  
Benilan P., 1981, Contributions to Analysis and Geometry, P23
[5]   The fractional porous medium equation on the hyperbolic space [J].
Berchio, Elvise ;
Bonforte, Matteo ;
Ganguly, Debdip ;
Grillo, Gabriele .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2020, 59 (05)
[6]   Fast diffusion flow on manifolds of nonpositive curvature [J].
Bonforte, Matteo ;
Grillo, Gabriele ;
Vazquez, Juan Luis .
JOURNAL OF EVOLUTION EQUATIONS, 2008, 8 (01) :99-128
[7]   Fine properties of solutions to the Cauchy problem for a fast diffusion equation with Caffarelli-Kohn-Nirenberg weights [J].
Bonforte, Matteo ;
Simonov, Nikita .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2023, 40 (01) :1-59
[8]   SHARP GLOBAL ESTIMATES FOR LOCAL AND NONLOCAL POROUS MEDIUM-TYPE EQUATIONS IN BOUNDED DOMAINS [J].
Bonforte, Matteo ;
Figalli, Alessio ;
Luis Vazquez, Juan .
ANALYSIS & PDE, 2018, 11 (04) :945-982
[9]   Infinite Speed of Propagation and Regularity of Solutions to the Fractional Porous Medium Equation in General Domains [J].
Bonforte, Matteo ;
Figalli, Alessio ;
Ros-Oton, Xavier .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2017, 70 (08) :1472-1508
[10]   Fractional nonlinear degenerate diffusion equations on bounded domains part I. Existence, uniqueness and upper bounds [J].
Bonforte, Matteo ;
Luis Vazquez, Juan .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2016, 131 :363-398