Enhanced decoupling graph convolution network for skeleton-based action recognition

被引:0
|
作者
Gu, Yue [1 ,2 ]
Yu, Qiang [1 ]
Xue, Wanli [1 ,2 ]
机构
[1] Tianjin Univ Technol, Key Lab Comp Vis & Syst, Minist Educ, Sch Comp Sci & Engn, Tianjin 300384, Peoples R China
[2] Tianjin Univ Technol, Engn Res Ctr Learning Based Intelligent Syst, Minist Educ, Tianjin 300384, Peoples R China
关键词
Action recognition; Graph convolution networks; Attention mechanism;
D O I
10.1007/s11042-023-17176-x
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In skeleton-based action recognition, graph convolution networks have been widely applied and very successful. However, because graph convolution is a local operation with a small field of perception, it cannot investigate well for the connections between joints that are far apart in the skeleton graph. In addition, graph convolution makes all channels share the same adjacency matrix, which causes the topology learned to be the same among different channels, which limits the ability of graph convolution to learn topological information. In this paper, we propose an enhanced decoupling graph convolution network that effectively expands the perceptual field of the graph convolution by adding additional graphs, and the decoupled feature fusion mechanism increases its expressive power. In addition, we introduce an attention mechanism in the model to obtain the important elements in the whole feature map from both spatial and temporal dimensions simultaneously, so that the graph convolution can focus on the important elements more precisely and efficiently and suppress the influence of irrelevant elements on the model performance. To validate the effectiveness and advancedness of the proposed model, we conducted extensive experiments on three large datasets: NTU RGB+D 60, NTU RGB+D120 and Northwestern-UCLA. On the NTU RGB+D 60 dataset, the accuracy of our model archieves 91.6% and 96.5% on the two protocols.
引用
收藏
页码:73289 / 73304
页数:16
相关论文
共 50 条
  • [41] Improved Graph Convolutional Network with Enriched Graph Topology Representation for Skeleton-Based Action Recognition
    Alsarhan, Tamam
    Harfoushi, Osama
    Shdefat, Ahmed Younes
    Mostafa, Nour
    Alshinwan, Mohammad
    Ali, Ahmad
    ELECTRONICS, 2023, 12 (04)
  • [42] Temporal-Channel Topology Enhanced Network for Skeleton-Based Action Recognition
    Luo, Jinzhao
    Zhou, Lu
    Zhu, Guibo
    Ge, Guojing
    Yang, Beiying
    Wang, Jinqiao
    PATTERN RECOGNITION AND COMPUTER VISION, PRCV 2023, PT I, 2024, 14425 : 109 - 119
  • [43] Multiple temporal scale aggregation graph convolutional network for skeleton-based action recognition
    Li, Xuanfeng
    Lu, Jian
    Zhou, Jian
    Liu, Wei
    Zhang, Kaibing
    COMPUTERS & ELECTRICAL ENGINEERING, 2023, 110
  • [44] Hierarchical graph attention network with pseudo-metapath for skeleton-based action recognition
    Wang, Mingdao
    Li, XueMing
    Zhang, Xianlin
    Zhang, Yue
    NEUROCOMPUTING, 2022, 501 : 822 - 833
  • [45] A Lightweight Architecture Attentional Shift Graph Convolutional Network for Skeleton-Based Action Recognition
    Li, Xianshan
    Kang, Jingwen
    Yang, Yang
    Zhao, Fengda
    INTERNATIONAL JOURNAL OF COMPUTERS COMMUNICATIONS & CONTROL, 2023, 18 (03)
  • [46] Self-Adaptive Graph With Nonlocal Attention Network for Skeleton-Based Action Recognition
    Pang, Chen
    Gao, Xingyu
    Chen, Zhenyu
    Lyu, Lei
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (12) : 17057 - 17069
  • [47] Decoupled Knowledge Embedded Graph Convolutional Network for Skeleton-Based Human Action Recognition
    Liu, Yanan
    Li, Yanqiu
    Zhang, Hao
    Zhang, Xuejie
    Xu, Dan
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2024, 34 (10) : 9445 - 9457
  • [48] Spatial-Temporal gated graph attention network for skeleton-based action recognition
    Rahevar, Mrugendrasinh
    Ganatra, Amit
    PATTERN ANALYSIS AND APPLICATIONS, 2023, 26 (03) : 929 - 939
  • [49] Spatial-Temporal Dynamic Graph Attention Network for Skeleton-Based Action Recognition
    Rahevar, Mrugendrasinh
    Ganatra, Amit
    Saba, Tanzila
    Rehman, Amjad
    Bahaj, Saeed Ali
    IEEE ACCESS, 2023, 11 : 21546 - 21553
  • [50] Spatial-Temporal Adaptive Graph Convolutional Network for Skeleton-Based Action Recognition
    Hang, Rui
    Li, MinXian
    COMPUTER VISION - ACCV 2022, PT IV, 2023, 13844 : 172 - 188