Enhanced decoupling graph convolution network for skeleton-based action recognition

被引:1
作者
Gu, Yue [1 ,2 ]
Yu, Qiang [1 ]
Xue, Wanli [1 ,2 ]
机构
[1] Tianjin Univ Technol, Key Lab Comp Vis & Syst, Minist Educ, Sch Comp Sci & Engn, Tianjin 300384, Peoples R China
[2] Tianjin Univ Technol, Engn Res Ctr Learning Based Intelligent Syst, Minist Educ, Tianjin 300384, Peoples R China
关键词
Action recognition; Graph convolution networks; Attention mechanism;
D O I
10.1007/s11042-023-17176-x
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In skeleton-based action recognition, graph convolution networks have been widely applied and very successful. However, because graph convolution is a local operation with a small field of perception, it cannot investigate well for the connections between joints that are far apart in the skeleton graph. In addition, graph convolution makes all channels share the same adjacency matrix, which causes the topology learned to be the same among different channels, which limits the ability of graph convolution to learn topological information. In this paper, we propose an enhanced decoupling graph convolution network that effectively expands the perceptual field of the graph convolution by adding additional graphs, and the decoupled feature fusion mechanism increases its expressive power. In addition, we introduce an attention mechanism in the model to obtain the important elements in the whole feature map from both spatial and temporal dimensions simultaneously, so that the graph convolution can focus on the important elements more precisely and efficiently and suppress the influence of irrelevant elements on the model performance. To validate the effectiveness and advancedness of the proposed model, we conducted extensive experiments on three large datasets: NTU RGB+D 60, NTU RGB+D120 and Northwestern-UCLA. On the NTU RGB+D 60 dataset, the accuracy of our model archieves 91.6% and 96.5% on the two protocols.
引用
收藏
页码:73289 / 73304
页数:16
相关论文
共 41 条
[1]  
Abu-El-Haifa S, 2019, PR MACH LEARN RES, V97
[2]  
Atwood J, 2016, ADV NEUR IN, V29
[3]  
Boski M, 2017, 2017 10TH INTERNATIONAL WORKSHOP ON MULTIDIMENSIONAL (ND) SYSTEMS (NDS)
[4]  
Bruna J, 2014, Arxiv, DOI [arXiv:1312.6203, 10.48550/arXiv.1312.6203, DOI 10.48550/ARXIV.1312.6203]
[5]   Learning Multi-Granular Spatio-Temporal Graph Network for Skeleton-based Action Recognition [J].
Chen, Tailin ;
Zhou, Desen ;
Wang, Jian ;
Wang, Shidong ;
Guan, Yu ;
He, Xuming ;
Ding, Errui .
PROCEEDINGS OF THE 29TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2021, 2021, :4334-4342
[6]   Decoupling GCN with DropGraph Module for Skeleton-Based Action Recognition [J].
Cheng, Ke ;
Zhang, Yifan ;
Cao, Congqi ;
Shi, Lei ;
Cheng, Jian ;
Lu, Hanqing .
COMPUTER VISION - ECCV 2020, PT XXIV, 2020, 12369 :536-553
[7]   Skeleton-Based Action Recognition with Shift Graph Convolutional Network [J].
Cheng, Ke ;
Zhang, Yifan ;
He, Xiangyu ;
Chen, Weihan ;
Cheng, Jian ;
Lu, Hanqing .
2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2020, :180-189
[8]   InfoGCN: Representation Learning for Human Skeleton-based Action Recognition [J].
Chi, Hyung-gun ;
Ha, Myoung Hoon ;
Chi, Seunggeun ;
Lee, Sang Wan ;
Huang, Qixing ;
Ramani, Karthik .
2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, :20154-20164
[9]  
Defferrard M, 2016, ADV NEUR IN, V29
[10]  
Du Y, 2015, PROC CVPR IEEE, P1110, DOI 10.1109/CVPR.2015.7298714