Unsupervised Domain Adaptation Method Based on Domain-Invariant Features Evaluation and Knowledge Distillation for Bearing Fault Diagnosis

被引:2
|
作者
Sun, Kong [1 ]
Bo, Lin [1 ]
Ran, Haoting [1 ]
Tang, Zhi [1 ]
Bi, Yuanliang [1 ]
机构
[1] Chongqing Univ, State Key Lab Mech Transmiss, Chongqing 400044, Peoples R China
基金
中国国家自然科学基金;
关键词
Domain-invariant features; fault diagnosis; knowledge distillation (KD); pseudo-labels; soft attention mechanism (SAM);
D O I
10.1109/TIM.2023.3318747
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Numerous unsupervised domain adaptation (UDA) methods for bearing fault diagnosis rely on extracting domain-invariant features to mitigate the impact of domain shift interference. However, the lack of evaluation criteria results in limited interpretability of domain-invariant features. Additionally, current pseudo-label prediction methods heavily rely on label information or computational resources, and the traditional Softmax function fails to capture valuable information. To address these problems, this article proposes a UDA method based on domain-invariant features evaluation and knowledge distillation (KD) for bearing fault diagnosis. First, mutual information and soft attention mechanism are integrated into the extraction of multivariate features to access the quality of domain-invariant features and enhance interpretability. Then, the concept of KD is introduced to predict pseudo-labels in the target domain without relying on label information or computational resources. Furthermore, an asynchronous feature metric adaptive strategy is developed to adjust the feature alignment metric, considering the maturity and precision of pseudo-labels. The effectiveness and superiority of the proposed method are demonstrated through comparative experiments and ablation studies on two bearing datasets.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] A Compressed Unsupervised Deep Domain Adaptation Model for Efficient Cross-Domain Fault Diagnosis
    Xu, Gaowei
    Huang, Chenxi
    Silva, Daniel Santos da
    Albuquerque, Victor Hugo C. de
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2023, 19 (05) : 6741 - 6749
  • [42] A domain adaptation method for bearing fault diagnosis using multiple incomplete source data
    Qibin Wang
    Yuanbing Xu
    Shengkang Yang
    Jiantao Chang
    Jingang Zhang
    Xianguang Kong
    Journal of Intelligent Manufacturing, 2024, 35 : 777 - 791
  • [43] A domain adaptation model based on multiscale residual networks for aeroengine bearing cross-domain fault diagnosis
    Yang, Pu
    Geng, Huilin
    Liu, Peng
    Wen, ChenWan
    Shen, Ziwei
    MEASUREMENT & CONTROL, 2023, 56 (5-6) : 975 - 988
  • [44] Bearing fault diagnosis under different operating conditions based on cross domain feature projection and domain adaptation
    Dong, Shuzhi
    Wen, Guangrui
    Zhang, Zhifen
    2019 IEEE INTERNATIONAL INSTRUMENTATION AND MEASUREMENT TECHNOLOGY CONFERENCE (I2MTC), 2019, : 1185 - 1190
  • [45] Generalized Simulation-Based Domain Adaptation Approach for Intelligent Bearing Fault Diagnosis
    Nguyen, Thi Hue
    Hung, Vuong Viet
    Thinh, Dao Duc
    Tran, Thi Thao
    Hong, Hoang Si
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2024, 49 (12) : 16941 - 16957
  • [46] Bearing Fault Diagnosis Based on Deep Discriminative Adversarial Domain Adaptation Neural Networks
    Guo, Jinxi
    Chen, Kai
    Liu, Jiehui
    Ma, Yuhao
    Wu, Jie
    Wu, Yaochun
    Xue, Xiaofeng
    Li, Jianshen
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2024, 138 (03): : 2619 - 2640
  • [47] Diffusion-UDA: Diffusion-based unsupervised domain adaptation for submersible fault diagnosis
    Zhao, Penghui
    Wang, Xindi
    Zhang, Yi
    Li, Yang
    Wang, Hongjun
    Yang, Yang
    ELECTRONICS LETTERS, 2024, 60 (03)
  • [48] Domain adaptation-based deep feature learning method with a mixture of distance measures for bearing fault diagnosis
    Zhou, Kaibo
    Cao, Guannan
    Zhang, Kaifeng
    Liu, Jie
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2021, 32 (09)
  • [49] Balanced Adaptation Regularization Based Transfer Learning for Unsupervised Cross-Domain Fault Diagnosis
    Hu, Qin
    Si, Xiaosheng
    Qin, Aisong
    Lv, Yunrong
    Liu, Mei
    IEEE SENSORS JOURNAL, 2022, 22 (12) : 12139 - 12151
  • [50] Triplet Loss Guided Adversarial Domain Adaptation for Bearing Fault Diagnosis
    Wang, Xiaodong
    Liu, Feng
    SENSORS, 2020, 20 (01)