EddyDet: A Deep Framework for Oceanic Eddy Detection in Synthetic Aperture Radar Images

被引:3
|
作者
Zhang, Di [1 ]
Gade, Martin [1 ]
Wang, Wensheng [2 ,3 ]
Zhou, Haoran [2 ,3 ]
机构
[1] Univ Hamburg, Inst Meereskunde, D-20146 Hamburg, Germany
[2] Chinese Acad Sci, Inst Elect, Key Lab Network Informat Syst Technol NIST, Beijing 100190, Peoples R China
[3] Chinese Acad Sci, Aerosp Informat Res Inst, Beijing 100094, Peoples R China
关键词
oceanic eddy detection; deep learning; Mask RCNN; SAR; edge enhancement; EDDIES; STATISTICS; TRACKING; SEA;
D O I
10.3390/rs15194752
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
This paper presents a deep framework EddyDet to automatically detect oceanic eddies in Synthetic Aperture Radar (SAR) images. The EddyDet has been developed using the Mask Region with Convolutional Neural Networks (Mask RCNN) framework, incorporating two new branches: Edge Head and Mask Intersection over Union (IoU) Head. The Edge Head can learn internal texture information implicitly, and the Mask IoU Head improves the quality of predicted masks. A SAR dataset for Oceanic Eddy Detection (SOED) is specifically constructed to evaluate the effectiveness of the EddyDet model in detecting oceanic eddies. We demonstrate that the EddyDet is capable of achieving acceptable eddy detection results under the condition of limited training samples, which outperforms a Mask RCNN baseline in terms of average precision. The combined Edge Head and Mask IoU Head have the ability to describe the characteristics of eddies more correctly, while the EddyDet shows great potential in practice use accurately and time efficiently, saving manual labor to a large extent.
引用
收藏
页数:18
相关论文
共 50 条
  • [41] Ship Detection in Synthetic Aperture Radar Images Based on BiLevel Spatial Attention and Deep Poly Kernel Network
    Tian, Siyuan
    Jin, Guodong
    Gao, Jing
    Tan, Lining
    Xue, Yuanliang
    Li, Yang
    Liu, Yantong
    JOURNAL OF MARINE SCIENCE AND ENGINEERING, 2024, 12 (08)
  • [42] Deforestation detection using a spatio-temporal deep learning approach with synthetic aperture radar and multispectral images
    Solórzano, Jonathan V.
    Mas, Jean François
    Gallardo-Cruz, J. Alberto
    Gao, Yan
    Fernández-Montes de Oca, Ana
    ISPRS Journal of Photogrammetry and Remote Sensing, 2023, 199 : 87 - 101
  • [43] Deforestation detection using a spatio-temporal deep learning approach with synthetic aperture radar and multispectral images
    Solorzano, Jonathan, V
    Francois Mas, Jean
    Alberto Gallardo-Cruz, J.
    Gao, Yan
    Fernandez-Montes de Oca, Ana
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2023, 199 : 87 - 101
  • [44] On the Discrimination of Radar Signatures of Atmospheric Gravity Waves and Oceanic Internal Waves on Synthetic Aperture Radar Images of the Sea Surface
    Alpers, Werner
    Huang, Weigen
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2011, 49 (03): : 1114 - 1126
  • [45] Compression of Synthetic-Aperture Radar Images
    Bielecka, Marzena
    Bielecki, Andrzej
    Wojdanowski, Wojciech
    COMPUTER VISION AND GRAPHICS, ICCVG 2014, 2014, 8671 : 92 - +
  • [46] Difficulties in superresolving synthetic aperture radar images
    Doerry, AW
    Dickey, FM
    Romero, LA
    DeLaurentis, JM
    ALGORITHMS FOR SYNTHETIC APERTURE RADAR IMAGERY IX, 2002, 4727 : 122 - 133
  • [47] Parallel matching of synthetic aperture radar images
    Goller, A
    PARALLEL COMPUTATION, 1999, 1557 : 408 - 416
  • [48] Compression of synthetic-aperture radar images
    1600, Springer Verlag (8671):
  • [49] Statistical investigations of the synthetic aperture radar images
    Totsky, A.V.
    Gorbunenko, B.F.
    Technological Forecasting and Social Change, 1994, 46 (03) : 1761 - 1774
  • [50] Lossless compression of synthetic aperture radar images
    Ives, RW
    Magotra, N
    Mandyam, GD
    ISCAS 96: 1996 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS - CIRCUITS AND SYSTEMS CONNECTING THE WORLD, VOL 2, 1996, : 441 - 444