EddyDet: A Deep Framework for Oceanic Eddy Detection in Synthetic Aperture Radar Images

被引:3
作者
Zhang, Di [1 ]
Gade, Martin [1 ]
Wang, Wensheng [2 ,3 ]
Zhou, Haoran [2 ,3 ]
机构
[1] Univ Hamburg, Inst Meereskunde, D-20146 Hamburg, Germany
[2] Chinese Acad Sci, Inst Elect, Key Lab Network Informat Syst Technol NIST, Beijing 100190, Peoples R China
[3] Chinese Acad Sci, Aerosp Informat Res Inst, Beijing 100094, Peoples R China
关键词
oceanic eddy detection; deep learning; Mask RCNN; SAR; edge enhancement; EDDIES; STATISTICS; TRACKING; SEA;
D O I
10.3390/rs15194752
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
This paper presents a deep framework EddyDet to automatically detect oceanic eddies in Synthetic Aperture Radar (SAR) images. The EddyDet has been developed using the Mask Region with Convolutional Neural Networks (Mask RCNN) framework, incorporating two new branches: Edge Head and Mask Intersection over Union (IoU) Head. The Edge Head can learn internal texture information implicitly, and the Mask IoU Head improves the quality of predicted masks. A SAR dataset for Oceanic Eddy Detection (SOED) is specifically constructed to evaluate the effectiveness of the EddyDet model in detecting oceanic eddies. We demonstrate that the EddyDet is capable of achieving acceptable eddy detection results under the condition of limited training samples, which outperforms a Mask RCNN baseline in terms of average precision. The combined Edge Head and Mask IoU Head have the ability to describe the characteristics of eddies more correctly, while the EddyDet shows great potential in practice use accurately and time efficiently, saving manual labor to a large extent.
引用
收藏
页数:18
相关论文
共 70 条
[61]   Submesoscale oceanic eddy detection in SAR images using context and edge association network [J].
Xia, Linghui ;
Chen, Ge ;
Chen, Xiaoyan ;
Ge, Linyao ;
Huang, Baoxiang .
FRONTIERS IN MARINE SCIENCE, 2022, 9
[62]   Three Mesoscale Eddy Detection and Tracking Methods: Assessment for the South China Sea [J].
Xing, Tao ;
Yang, Yikai .
JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY, 2021, 38 (02) :243-258
[63]   Oceanic Eddy Identification Using an AI Scheme [J].
Xu, Guangjun ;
Cheng, Cheng ;
Yang, Wenxian ;
Xie, Wenhong ;
Kong, Lingmei ;
Hang, Renlong ;
Ma, Furong ;
Dong, Changming ;
Yang, Jingsong .
REMOTE SENSING, 2019, 11 (11)
[64]   Multifeature Fusion Neural Network for Oceanic Phenomena Detection in SAR Images [J].
Yan, Zhuofan ;
Chong, Jinsong ;
Zhao, Yawei ;
Sun, Kai ;
Wang, Yuhang ;
Li, Yan .
SENSORS, 2020, 20 (01)
[65]   SCRDet: Towards More Robust Detection for Small, Cluttered and Rotated Objects [J].
Yang, Xue ;
Yang, Jirui ;
Yan, Junchi ;
Zhang, Yue ;
Zhang, Tengfei ;
Guo, Zhi ;
Sun, Xian ;
Fu, Kun .
2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, :8231-8240
[66]   SAR EDDY DETECTION USING MASK-RCNN AND EDGE ENHANCEMENT [J].
Zhang, Di ;
Gade, Martin ;
Zhang, Jianwei .
IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2020, :1604-1607
[67]   A Survey on Multi-Task Learning [J].
Zhang, Yu ;
Yang, Qiang .
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2022, 34 (12) :5586-5609
[68]   Global chlorophyll distribution induced by mesoscale eddies [J].
Zhao, Dandan ;
Xu, Yongsheng ;
Zhang, Xiangguang ;
Huang, Chao .
REMOTE SENSING OF ENVIRONMENT, 2021, 254 (254)
[69]   A brief introduction to weakly supervised learning [J].
Zhou, Zhi-Hua .
NATIONAL SCIENCE REVIEW, 2018, 5 (01) :44-53
[70]   Faster training of Mask R-CNN by focusing on instance boundaries [J].
Zimmermann, Roland S. ;
Siems, Julien N. .
COMPUTER VISION AND IMAGE UNDERSTANDING, 2019, 188