EddyDet: A Deep Framework for Oceanic Eddy Detection in Synthetic Aperture Radar Images

被引:3
作者
Zhang, Di [1 ]
Gade, Martin [1 ]
Wang, Wensheng [2 ,3 ]
Zhou, Haoran [2 ,3 ]
机构
[1] Univ Hamburg, Inst Meereskunde, D-20146 Hamburg, Germany
[2] Chinese Acad Sci, Inst Elect, Key Lab Network Informat Syst Technol NIST, Beijing 100190, Peoples R China
[3] Chinese Acad Sci, Aerosp Informat Res Inst, Beijing 100094, Peoples R China
关键词
oceanic eddy detection; deep learning; Mask RCNN; SAR; edge enhancement; EDDIES; STATISTICS; TRACKING; SEA;
D O I
10.3390/rs15194752
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
This paper presents a deep framework EddyDet to automatically detect oceanic eddies in Synthetic Aperture Radar (SAR) images. The EddyDet has been developed using the Mask Region with Convolutional Neural Networks (Mask RCNN) framework, incorporating two new branches: Edge Head and Mask Intersection over Union (IoU) Head. The Edge Head can learn internal texture information implicitly, and the Mask IoU Head improves the quality of predicted masks. A SAR dataset for Oceanic Eddy Detection (SOED) is specifically constructed to evaluate the effectiveness of the EddyDet model in detecting oceanic eddies. We demonstrate that the EddyDet is capable of achieving acceptable eddy detection results under the condition of limited training samples, which outperforms a Mask RCNN baseline in terms of average precision. The combined Edge Head and Mask IoU Head have the ability to describe the characteristics of eddies more correctly, while the EddyDet shows great potential in practice use accurately and time efficiently, saving manual labor to a large extent.
引用
收藏
页数:18
相关论文
共 70 条
[21]  
Gade M, 2013, OCEANOGRAPHY, V26, P138
[22]  
Guo CX, 2020, PROC CVPR IEEE, P12592, DOI 10.1109/CVPR42600.2020.01261
[23]   A survey on instance segmentation: state of the art [J].
Hafiz, Abdul Mueed ;
Bhat, Ghulam Mohiuddin .
INTERNATIONAL JOURNAL OF MULTIMEDIA INFORMATION RETRIEVAL, 2020, 9 (03) :171-189
[24]  
He KM, 2017, IEEE I CONF COMP VIS, P2980, DOI [10.1109/TPAMI.2018.2844175, 10.1109/ICCV.2017.322]
[25]   Deep Residual Learning for Image Recognition [J].
He, Kaiming ;
Zhang, Xiangyu ;
Ren, Shaoqing ;
Sun, Jian .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :770-778
[26]  
Huang DM, 2017, IEEE INT C NETW SENS, P673, DOI 10.1109/ICNSC.2017.8000171
[27]   Mask Scoring R-CNN [J].
Huang, Zhaojin ;
Huang, Lichao ;
Gong, Yongchao ;
Huang, Chang ;
Wang, Xinggang .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, :6402-6411
[28]   Coastal ocean fronts and eddies imaged with ERS 1 synthetic aperture radar [J].
Johannessen, JA ;
Shuchman, RA ;
Digranes, G ;
Lyzenga, DR ;
Wackerman, C ;
Johannessen, OM ;
Vachon, PW .
JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 1996, 101 (C3) :6651-6667
[29]   Improved statistics of sub-mesoscale eddies in the Baltic Sea retrieved from SAR imagery [J].
Karimova, Svetlana ;
Gade, Martin .
INTERNATIONAL JOURNAL OF REMOTE SENSING, 2016, 37 (10) :2394-2414
[30]   Spiral eddies in the Baltic, Black and Caspian seas as seen by satellite radar data [J].
Karimova, Svetlana .
ADVANCES IN SPACE RESEARCH, 2012, 50 (08) :1107-1124