EddyDet: A Deep Framework for Oceanic Eddy Detection in Synthetic Aperture Radar Images

被引:3
作者
Zhang, Di [1 ]
Gade, Martin [1 ]
Wang, Wensheng [2 ,3 ]
Zhou, Haoran [2 ,3 ]
机构
[1] Univ Hamburg, Inst Meereskunde, D-20146 Hamburg, Germany
[2] Chinese Acad Sci, Inst Elect, Key Lab Network Informat Syst Technol NIST, Beijing 100190, Peoples R China
[3] Chinese Acad Sci, Aerosp Informat Res Inst, Beijing 100094, Peoples R China
关键词
oceanic eddy detection; deep learning; Mask RCNN; SAR; edge enhancement; EDDIES; STATISTICS; TRACKING; SEA;
D O I
10.3390/rs15194752
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
This paper presents a deep framework EddyDet to automatically detect oceanic eddies in Synthetic Aperture Radar (SAR) images. The EddyDet has been developed using the Mask Region with Convolutional Neural Networks (Mask RCNN) framework, incorporating two new branches: Edge Head and Mask Intersection over Union (IoU) Head. The Edge Head can learn internal texture information implicitly, and the Mask IoU Head improves the quality of predicted masks. A SAR dataset for Oceanic Eddy Detection (SOED) is specifically constructed to evaluate the effectiveness of the EddyDet model in detecting oceanic eddies. We demonstrate that the EddyDet is capable of achieving acceptable eddy detection results under the condition of limited training samples, which outperforms a Mask RCNN baseline in terms of average precision. The combined Edge Head and Mask IoU Head have the ability to describe the characteristics of eddies more correctly, while the EddyDet shows great potential in practice use accurately and time efficiently, saving manual labor to a large extent.
引用
收藏
页数:18
相关论文
共 70 条
[1]   Soft-NMS - Improving Object Detection With One Line of Code [J].
Bodla, Navaneeth ;
Singh, Bharat ;
Chellappa, Rama ;
Davis, Larry S. .
2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2017, :5562-5570
[2]   Response of the atmospheric boundary layer to a mesoscale oceanic eddy in the northeast Atlantic [J].
Bourras, D ;
Reverdin, G ;
Giordani, H ;
Caniaux, G .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2004, 109 (D18) :1-19
[3]   Mesoscale atmosphere ocean coupling enhances the transfer of wind energy into the ocean [J].
Byrne, D. ;
Munnich, M. ;
Frenger, I. ;
Gruber, N. .
NATURE COMMUNICATIONS, 2016, 7
[4]   Detection and Identification of Mesoscale Eddies in the South China Sea Based on an Artificial Neural Network Model-YOLOF and Remotely Sensed Data [J].
Cao, Lingjuan ;
Zhang, Dianjun ;
Zhang, Xuefeng ;
Guo, Quan .
REMOTE SENSING, 2022, 14 (21)
[5]   Eddy activity in the four major upwrelling systems from satellite altimetry (1992-2007) [J].
Chaigneau, Alexis ;
Eldin, Gerard ;
Dewitte, Boris .
PROGRESS IN OCEANOGRAPHY, 2009, 83 (1-4) :117-123
[6]   Mesoscale eddy effects [J].
Chelton, Dudley .
NATURE GEOSCIENCE, 2013, 6 (08) :594-595
[7]   Global observations of nonlinear mesoscale eddies [J].
Chelton, Dudley B. ;
Schlax, Michael G. ;
Samelson, Roger M. .
PROGRESS IN OCEANOGRAPHY, 2011, 91 (02) :167-216
[8]   Eddy heat and salt transports in the South China Sea and their seasonal modulations [J].
Chen, Gengxin ;
Gan, Jianping ;
Xie, Qiang ;
Chu, Xiaoqing ;
Wang, Dongxiao ;
Hou, Yijun .
JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 2012, 117
[9]   Mesoscale eddies in the South China Sea: Mean properties, spatiotemporal variability, and impact on thermohaline structure [J].
Chen, Gengxin ;
Hou, Yijun ;
Chu, Xiaoqing .
JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 2011, 116
[10]   Global Oceanic Eddy Identification: A Deep Learning Method From Argo Profiles and Altimetry Data [J].
Chen, Xiaoyan ;
Chen, Ge ;
Ge, Linyao ;
Huang, Baoxiang ;
Cao, Chuanchuan .
FRONTIERS IN MARINE SCIENCE, 2021, 8