Integrating blockchain and deep learning for intelligent greenhouse control and traceability

被引:12
作者
Frikha, Tarek [1 ,2 ]
Ktari, Jalel [3 ]
Zalila, Bechir [4 ]
Ghorbel, Oussama [3 ]
Ben Amor, Nader [3 ]
机构
[1] Univ Sfax, Fac Sci Sfax, Data Engn & Semant Res Unit, Sfax, Tunisia
[2] Univ Sfax, ENIS, Sfax, Tunisia
[3] Univ Sfax, CES Lab, ENIS, Sfax, Tunisia
[4] Univ Sfax, ReDCAD, ENIS, Sfax, Tunisia
关键词
Smart agriculture; Deep Learning Vision; Raspberry Pi4; Blockchain;
D O I
10.1016/j.aej.2023.08.027
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This research presents a solution that combines deep learning-based image processing, blockchain technology, and the Internet of Things (IoT) to achieve smarter control and traceability in greenhouse operations within the agricultural sector. By integrating these technologies, the aim is to overcome challenges posed by climate change, plant growth, limited agricultural land, and water scarcity, while enhancing crop yields and ensuring efficient and secure operations. The proposed system automates image capture, measurement, storage, and monitoring of environmental parameters in greenhouses, utilizing highly accurate image processing techniques with a 98% success rate. The integration of blockchain technology establishes an immutable and transparent record of transactions and data points, thereby improving traceability across the agricultural supply chain. This comprehensive approach fosters accountability, transparency, and trust, empowering consumers to make well-informed decisions regarding the products they purchase. Ultimately, this research contributes to advancing efficient and sustainable agricultural practices.
引用
收藏
页码:259 / 273
页数:15
相关论文
共 43 条
  • [1] Affes N., 2022, REAL TIME DETECTION, V2023, P1, DOI [10.1007/978-3-031-27440-4_122, DOI 10.1007/978-3-031-27440-4_122]
  • [2] Blockchain Technology in Healthcare: A Systematic Review
    Agbo, Cornelius C.
    Mahmoud, Qusay H.
    Eklund, J. Mikael
    [J]. HEALTHCARE, 2019, 7 (02)
  • [3] Al-Amin M, 2019, 2019 22 INT C COMP I, P1, DOI DOI 10.1109/ICCIT48885.2019.9038229
  • [4] A Survey on AI Implementation in Finance, (Cyber) Insurance and Financial Controlling
    Aleksandrova, Aleksandrina
    Ninova, Valentina
    Zhelev, Zhelyo
    [J]. RISKS, 2023, 11 (05)
  • [5] Deep learning: as the new frontier in high-throughput plant phenotyping
    Arya, Sunny
    Sandhu, Karansher Singh
    Singh, Jagmohan
    Kumar, Sudhir
    [J]. EUPHYTICA, 2022, 218 (04)
  • [6] A fast and robust method for plant count in sunflower and maize at different seedling stages using high-resolution UAV RGB imagery
    Bai, Yi
    Nie, Chenwei
    Wang, Hongwu
    Cheng, Minghan
    Liu, Shuaibing
    Yu, Xun
    Shao, Mingchao
    Wang, Zixu
    Wang, Siyu
    Tuohuti, Nuremanguli
    Shi, Lei
    Ming, Bo
    Jin, Xiuliang
    [J]. PRECISION AGRICULTURE, 2022, 23 (05) : 1720 - 1742
  • [7] Artificial Intelligence in Medicine: A Multinational Multi-Center Survey on the Medical and Dental Students' Perception
    Bisdas, Sotirios
    Topriceanu, Constantin-Cristian
    Zakrzewska, Zosia
    Irimia, Alexandra-Valentina
    Shakallis, Loizos
    Subhash, Jithu
    Casapu, Maria-Madalina
    Leon-Rojas, Jose
    Pinto dos Santos, Daniel
    Andrews, Dilys Miriam
    Zeicu, Claudia
    Bouhuwaish, Ahmad Mohammad
    Lestari, Avinindita Nura
    Abu-Ismail, Lua'i
    Sadiq, Arsal Subbah
    Khamees, Almu'atasim
    Mohammed, Khaled M. G.
    Williams, Estelle
    Omran, Aya Ibrahim
    Ismail, Dima Y. Abu
    Ebrahim, Esraa Hasan
    [J]. FRONTIERS IN PUBLIC HEALTH, 2021, 9
  • [8] Low Power Blockchained E-Vote Platform for University Environment
    Chaabane, Faten
    Ktari, Jalel
    Frikha, Tarek
    Hamam, Habib
    [J]. FUTURE INTERNET, 2022, 14 (09):
  • [9] Blockchain Applications in the Biomedical Domain: A Scoping Review
    Drosatos, George
    Kaldoudi, Eleni
    [J]. COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL, 2019, 17 : 229 - 240
  • [10] Ezzeddini L., 2022, 2022 15 INT C SEC IN, P01