Crop classification in high-resolution remote sensing images based on multi-scale feature fusion semantic segmentation model

被引:10
|
作者
Lu, Tingyu [1 ]
Gao, Meixiang [2 ,3 ]
Wang, Lei [4 ]
机构
[1] Harbin Normal Univ, Coll Geog Sci, Harbin, Peoples R China
[2] Ningbo Univ, Dept Geog & Spatial Informat Tech, Ningbo, Peoples R China
[3] Ningbo Univ, Sch Civil & Environm Engn & Geog Sci, Ningbo, Peoples R China
[4] Heilongjiang Inst Technol, Dept Surveying Engn, Harbin, Peoples R China
来源
FRONTIERS IN PLANT SCIENCE | 2023年 / 14卷
基金
英国科研创新办公室;
关键词
remote sensing; crop classification; deep learning; convolutional neural network; multi-scale feature; SENTINEL-2; NETWORKS;
D O I
10.3389/fpls.2023.1196634
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
The great success of deep learning in the field of computer vision provides a development opportunity for intelligent information extraction of remote sensing images. In the field of agriculture, a large number of deep convolutional neural networks have been applied to crop spatial distribution recognition. In this paper, crop mapping is defined as a semantic segmentation problem, and a multi-scale feature fusion semantic segmentation model MSSNet is proposed for crop recognition, aiming at the key problem that multi-scale neural networks can learn multiple features under different sensitivity fields to improve classification accuracy and fine-grained image classification. Firstly, the network uses multi-branch asymmetric convolution and dilated convolution. Each branch concatenates conventional convolution with convolution nuclei of different sizes with dilated convolution with different expansion coefficients. Then, the features extracted from each branch are spliced to achieve multi-scale feature fusion. Finally, a skip connection is used to combine low-level features from the shallow network with abstract features from the deep network to further enrich the semantic information. In the experiment of crop classification using Sentinel-2 remote sensing image, it was found that the method made full use of spectral and spatial characteristics of crop, achieved good recognition effect. The output crop classification mapping was better in plot segmentation and edge characterization of ground objects. This study can provide a good reference for high-precision crop mapping and field plot extraction, and at the same time, avoid excessive data acquisition and processing.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] SEMANTIC SEGMENTATION OF HIGH-RESOLUTION REMOTE SENSING IMAGES USING AN IMPROVED TRANSFORMER
    Liu, Yuheng
    Mei, Shaohui
    Zhang, Shun
    Wang, Ye
    He, Mingyi
    Du, Qian
    2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 3496 - 3499
  • [32] Object Detection in Remote Sensing Images Based on Adaptive Multi-Scale Feature Fusion Method
    Liu, Chun
    Zhang, Sixuan
    Hu, Mengjie
    Song, Qing
    REMOTE SENSING, 2024, 16 (05)
  • [33] Res50-SimAM-ASPP-Unet: A Semantic Segmentation Model for High-Resolution Remote Sensing Images
    Cai, Jiajing
    Shi, Jinmei
    Leau, Yu-Beng
    Meng, Shangyu
    Zheng, Xiuyan
    Zhou, Jinghe
    IEEE ACCESS, 2024, 12 : 192301 - 192316
  • [34] Edge Guidance Network for Semantic Segmentation of High-Resolution Remote Sensing Images
    Ni, Yue
    Liu, Jiahang
    Cui, Jian
    Yang, Yuze
    Wang, Xiaozhen
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2023, 16 : 9809 - 9822
  • [35] SEMANTIC SEGMENTATION OF HIGH-RESOLUTION REMOTE SENSING IMAGES BASED ON SPARSE SELF-ATTENTION
    Sun, Li
    Zou, Huanxin
    Wei, Juan
    Li, Meilin
    Cao, Xu
    He, Shitian
    Liu, Shuo
    2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 3492 - 3495
  • [36] MANet: a multi-level aggregation network for semantic segmentation of high-resolution remote sensing images
    Chen, Bingyu
    Xia, Min
    Qian, Ming
    Huang, Junqing
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2022, 43 (15-16) : 5874 - 5894
  • [37] Transformer-Based Multi-Scale Feature Remote Sensing Image Classification Model
    Sun, Ting
    Li, Jun
    Zhou, Xiangrui
    Chen, Zan
    IEEE ACCESS, 2025, 13 : 34095 - 34104
  • [38] Enhanced Lightweight End-to-End Semantic Segmentation for High-Resolution Remote Sensing Images
    Dong, He
    Yu, Baoguo
    Wu, Wanqing
    He, Chenglong
    IEEE ACCESS, 2022, 10 : 70947 - 70954
  • [39] Typhoon Classification Model Based on Multi-Scale Convolution Feature Fusion
    Lu Peng
    Zou Peiqi
    Zou Guoliang
    LASER & OPTOELECTRONICS PROGRESS, 2019, 56 (16)
  • [40] EMR-HRNet: A Multi-Scale Feature Fusion Network for Landslide Segmentation from Remote Sensing Images
    Jin, Yuanhang
    Liu, Xiaosheng
    Huang, Xiaobin
    SENSORS, 2024, 24 (11)