Overcoming the Fermi-Level Pinning Effect in the Nanoscale Metal and Silicon Interface

被引:2
|
作者
Su, Zih-Chun [1 ]
Lin, Ching-Fuh [1 ,2 ,3 ]
机构
[1] Natl Taiwan Univ, Grad Inst Photon & Optoelect, Taipei 10617, Taiwan
[2] Natl Taiwan Univ, Grad Inst Elect Engn, Taipei 10617, Taiwan
[3] Natl Taiwan Univ, Dept Elect Engn, Taipei 10617, Taiwan
关键词
ultra-broadband infrared photon detection technique; Schottky devices; Fermi-level pinning; interface passivation; PHOTODETECTOR;
D O I
10.3390/nano13152193
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Silicon-based photodetectors are attractive as low-cost and environmentally friendly optical sensors. Also, their compatibility with complementary metal-oxide-semiconductor (CMOS) technology is advantageous for the development of silicon photonics systems. However, extending optical responsivity of silicon-based photodetectors to the mid-infrared (mid-IR) wavelength range remains challenging. In developing mid-IR infrared Schottky detectors, nanoscale metals are critical. Nonetheless, one key factor is the Fermi-level pinning effect at the metal/silicon interface and the presence of metal-induced gap states (MIGS). Here, we demonstrate the utilization of the passivated surface layer on semiconductor materials as an insulating material in metal-insulator-semiconductor (MIS) contacts to mitigate the Fermi-level pinning effect. The removal of Fermi-level pinning effectively reduces the Schottky barrier height by 12.5% to 16%. The demonstrated devices exhibit a high responsivity of up to 234 & mu;A/W at a wavelength of 2 & mu;m, 48.2 & mu;A/W at 3 & mu;m, and 1.75 & mu;A/W at 6 & mu;m. The corresponding detectivities at 2 and 3 & mu;m are 1.17 x 10(8) cm Hz(1/2) W-1 and 2.41 x 10(7) cm Hz(1/2) W-1, respectively. The expanded sensing wavelength range contributes to the application development of future silicon photonics integration platforms.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] FERMI-LEVEL POSITION AT A SEMICONDUCTOR-METAL INTERFACE
    ZUR, A
    MCGILL, TC
    SMITH, DL
    PHYSICAL REVIEW B, 1983, 28 (04): : 2060 - 2067
  • [22] Electron transport through rectifying self-assembled monolayer diodes on silicon: Fermi-level pinning at the molecule-metal interface
    Lenfant, S.
    Guerin, D.
    Van, F. Tran
    Chevrot, C.
    Palacin, S.
    Bourgoin, J. P.
    Bouloussa, O.
    Rondelez, F.
    Vuillaume, D.
    JOURNAL OF PHYSICAL CHEMISTRY B, 2006, 110 (28): : 13947 - 13958
  • [23] Formation of the yttrium/germanium interface: Fermi-level pinning and intermixing at room temperature
    Liu, Z. Q.
    Chim, W. K.
    Chiam, S. Y.
    Pan, J. S.
    Ng, C. M.
    APPLIED PHYSICS LETTERS, 2012, 100 (09)
  • [24] FERMI-LEVEL PINNING AND INTERFACE STATES AT CAF2/SI(111)
    FUJITANI, H
    ASANO, S
    PHYSICAL REVIEW B, 1989, 40 (12): : 8357 - 8362
  • [25] Sputter Deposition of Transition Metal Oxides on Silicon: Evidencing the Role of Oxygen Bombardment for Fermi-Level Pinning
    Poulain, Raphael
    Proost, Joris
    Klein, Andreas
    PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2019, 216 (23):
  • [26] Fermi-level pinning and charge neutrality level in germanium
    Dimoulas, A.
    Tsipas, P.
    Sotiropoulos, A.
    Evangelou, E. K.
    APPLIED PHYSICS LETTERS, 2006, 89 (25)
  • [27] Fermi-Level Pinning at the Poly-Si/HfO2 Interface
    Jung, Ranju
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2009, 55 (06) : 2501 - 2504
  • [28] FERMI-LEVEL PINNING AND HEAVILY DOPED OVERLAYERS
    MAHOWALD, PH
    SPICER, WE
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A-VACUUM SURFACES AND FILMS, 1988, 6 (03): : 1539 - 1542
  • [29] OVERLAYER METALLICITY AND FERMI-LEVEL PINNING AT THE CA-GAAS(110) INTERFACE
    MAO, D
    YOUNG, K
    STILES, K
    KAHN, A
    JOURNAL OF APPLIED PHYSICS, 1988, 64 (09) : 4777 - 4780
  • [30] On the Fermi-level pinning of InN grown surfaces
    Binh Huy Le
    Zhao, Songrui
    Nhung Hong Tran
    Szkopek, Thomas
    Mi, Zetian
    APPLIED PHYSICS EXPRESS, 2015, 8 (06)