Electrochemical activation strategy enabled ammonium vanadate cathodes for all-climate zinc-ion batteries

被引:23
|
作者
Fang, Kan [1 ]
Liu, Yi-Lin [2 ]
Chen, Peng [3 ]
Zhang, Heng [4 ]
Fang, Daliang [5 ]
Zhang, Hua-Yu [1 ]
Wei, Zhan [1 ]
Ding, Ling [1 ]
Wang, Gui-Gen [1 ]
Yang, Hui Ying [5 ]
机构
[1] Harbin Inst Technol Shenzhen, Sch Mat Sci & Engn, Guangdong Prov Key Lab Semicond Optoelect Mat & In, Shenzhen 518055, Peoples R China
[2] Univ South China, Sch Mech Engn, Hengyang 421001, Hunan, Peoples R China
[3] Yangzhou Univ, Inst Innovat Mat & Energy, Fac Chem & Chem Engn, Yangzhou 225009, Jiangsu, Peoples R China
[4] Suzhou Univ Sci & Technol, Sch Mat Sci & Engn, Suzhou 215009, Peoples R China
[5] Singapore Univ Technol & Design, Pillar Engn Prod Dev, 8 Somapah Rd, Singapore 487372, Singapore
基金
中国国家自然科学基金;
关键词
Zinc-ion batteries; Electrochemical activation; Ammonium vanadate; Large areal capacity; All-climate; ELECTRODES;
D O I
10.1016/j.nanoen.2023.108671
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Aqueous zinc-ion batteries (ZIBs) have attracted significant attention for grid-scale energy applications due to their low cost, intrinsic safety, and environmental friendliness. However, the energy density of current ZIBs is impeded by unsatisfactory performance of cathodes, due to their limited areal capacity and low active material loading, especially at extreme environments. Herein, an electrochemical activation strategy is put forward to build high energy density ZIBs by designing a flexible cathode composed of NH4+ pillared ammonium vanadate nanosheets on carbon cloth (NVMCE@CC). The electrochemical activation process with high anodic potential (> 1.5 V vs. Zn2+/Zn) guarantees the effective conversion of low-valent to high-valent vanadium and promotes the utilization of large amounts of vanadium elements in the NVMCE@CC composite. Meanwhile, the pillared NH4+ ions expand the interlayer spacing and enhance the structural integrity through the hydrogen bonding between NH4+ and V-O framework. Consequently, the activated NVMCE@CC cathode with a high mass-loading of-5.2 mg cm-2 delivers large areal capacity (-1.74 mAh cm-2 at 1 mA cm-2) and superior cycling stability (capacity retention of 72.1% after 1500 cycles). Importantly, the flexible cathode shows admirable capacities of 0.52 mAh cm-2 at 60 degrees C and 0.55 mAh cm-2 at -10 degrees C, respectively. Moreover, the NVMCE@CC//Zn@CC quasi-solid-state battery demonstrates excellent safety performance and performs well in extreme situations, including bending, cutting, hammering, and washing. This work provides enlightenment for the development of large-areal-capacity vanadium-based cathode materials for practical ZIBs.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Synthesis and Electrochemical Properties of Manganese Dioxide as Cathode Material for Aqueous Zinc-Ion Batteries
    A. I. Volkov
    A. O. Efremova
    E. G. Tolstopyatova
    V. V. Kondratiev
    Russian Journal of Applied Chemistry, 2021, 94 : 1097 - 1104
  • [42] Low-current-density stability of vanadium-based cathodes for aqueous zinc-ion batteries
    Dou, Xinyue
    Xie, Xuefang
    Liang, Shuquan
    Fang, Guozhao
    SCIENCE BULLETIN, 2024, 69 (06) : 833 - 845
  • [43] Electrochemical Activation of Manganese-Based Cathode in Aqueous Zinc-Ion Electrolyte
    Zhang, Tengsheng
    Tang, Yan
    Fang, Guozhao
    Zhang, Chenyang
    Zhang, Hongliang
    Guo, Xun
    Cao, Xinxin
    Zhou, Jiang
    Pan, Anqiang
    Liang, Shuquan
    ADVANCED FUNCTIONAL MATERIALS, 2020, 30 (30)
  • [44] Synthesis and Electrochemical Properties of Manganese Dioxide as Cathode Material for Aqueous Zinc-Ion Batteries
    Volkov, A., I
    Efremova, A. O.
    Tolstopyatova, E. G.
    Kondratiev, V. V.
    RUSSIAN JOURNAL OF APPLIED CHEMISTRY, 2021, 94 (08) : 1097 - 1104
  • [45] Electrolyte/electrode interfacial electrochemical behaviors and optimization strategies in aqueous zinc-ion batteries
    Zhou, Miao
    Chen, Yue
    Fang, Guozhao
    Liang, Shuquan
    ENERGY STORAGE MATERIALS, 2022, 45 : 618 - 646
  • [46] Polymeric acid additive strategy for long-lifetime aqueous zinc-ion batteries
    Li, Jiaming
    Long, Yini
    Yu, Xiao
    Li, Jiaqi
    Li, Nan
    Han, Junyi
    Wang, Jianglin
    Yang, Zhanhong
    ENERGY STORAGE MATERIALS, 2025, 76
  • [47] Organic cation-supported layered vanadate cathode for high-performance aqueous zinc-ion batteries
    Wang, Changding
    Li, Yingfang
    Zhang, Sida
    Sang, Tian-Yi
    Lei, Yu
    Liu, Ruiqi
    Wan, Fu
    Chen, Yuejiao
    Chen, Weigen
    Zheng, Yujie
    Sun, Shuhui
    CARBON ENERGY, 2025, 7 (02)
  • [48] Boosting Zn2+ Storage Kinetics by K-Doping of Sodium Vanadate for Zinc-Ion Batteries
    Jia, Mengting
    Jin, Chen
    Yu, Jiamin
    Li, Shaohui
    MATERIALS, 2024, 17 (19)
  • [49] Crystal plane induced in-situ electrochemical activation of manganese-based cathode enable long-term aqueous zinc-ion batteries
    Gao, Yuxin
    Zhou, Jiang
    Qin, Liping
    Xu, Zhenming
    Liu, Zhexuan
    Wang, Liangbing
    Cao, Xinxin
    Fang, Guozhao
    Liang, Shuquan
    GREEN ENERGY & ENVIRONMENT, 2023, 8 (05) : 1429 - 1436
  • [50] Wide interlayer spacing ammonium vanadate (NH4)0.37V2O5.0.15(H2O) cathode for rechargeable aqueous zinc-ion batteries
    Tamilselvan, Muthusamy
    Sreekanth, Thupakula Venkata Madhukar
    Yoo, Kisoo
    Kim, Jonghoon
    JOURNAL OF INDUSTRIAL AND ENGINEERING CHEMISTRY, 2021, 93 : 176 - 185