Electrochemical activation strategy enabled ammonium vanadate cathodes for all-climate zinc-ion batteries

被引:23
|
作者
Fang, Kan [1 ]
Liu, Yi-Lin [2 ]
Chen, Peng [3 ]
Zhang, Heng [4 ]
Fang, Daliang [5 ]
Zhang, Hua-Yu [1 ]
Wei, Zhan [1 ]
Ding, Ling [1 ]
Wang, Gui-Gen [1 ]
Yang, Hui Ying [5 ]
机构
[1] Harbin Inst Technol Shenzhen, Sch Mat Sci & Engn, Guangdong Prov Key Lab Semicond Optoelect Mat & In, Shenzhen 518055, Peoples R China
[2] Univ South China, Sch Mech Engn, Hengyang 421001, Hunan, Peoples R China
[3] Yangzhou Univ, Inst Innovat Mat & Energy, Fac Chem & Chem Engn, Yangzhou 225009, Jiangsu, Peoples R China
[4] Suzhou Univ Sci & Technol, Sch Mat Sci & Engn, Suzhou 215009, Peoples R China
[5] Singapore Univ Technol & Design, Pillar Engn Prod Dev, 8 Somapah Rd, Singapore 487372, Singapore
基金
中国国家自然科学基金;
关键词
Zinc-ion batteries; Electrochemical activation; Ammonium vanadate; Large areal capacity; All-climate; ELECTRODES;
D O I
10.1016/j.nanoen.2023.108671
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Aqueous zinc-ion batteries (ZIBs) have attracted significant attention for grid-scale energy applications due to their low cost, intrinsic safety, and environmental friendliness. However, the energy density of current ZIBs is impeded by unsatisfactory performance of cathodes, due to their limited areal capacity and low active material loading, especially at extreme environments. Herein, an electrochemical activation strategy is put forward to build high energy density ZIBs by designing a flexible cathode composed of NH4+ pillared ammonium vanadate nanosheets on carbon cloth (NVMCE@CC). The electrochemical activation process with high anodic potential (> 1.5 V vs. Zn2+/Zn) guarantees the effective conversion of low-valent to high-valent vanadium and promotes the utilization of large amounts of vanadium elements in the NVMCE@CC composite. Meanwhile, the pillared NH4+ ions expand the interlayer spacing and enhance the structural integrity through the hydrogen bonding between NH4+ and V-O framework. Consequently, the activated NVMCE@CC cathode with a high mass-loading of-5.2 mg cm-2 delivers large areal capacity (-1.74 mAh cm-2 at 1 mA cm-2) and superior cycling stability (capacity retention of 72.1% after 1500 cycles). Importantly, the flexible cathode shows admirable capacities of 0.52 mAh cm-2 at 60 degrees C and 0.55 mAh cm-2 at -10 degrees C, respectively. Moreover, the NVMCE@CC//Zn@CC quasi-solid-state battery demonstrates excellent safety performance and performs well in extreme situations, including bending, cutting, hammering, and washing. This work provides enlightenment for the development of large-areal-capacity vanadium-based cathode materials for practical ZIBs.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Regulating Water Activity for All-Climate Aqueous Zinc-Ion Batteries
    Wang, Yifan
    Mo, Li'e
    Zhang, Xianxi
    Ren, Yingke
    Wei, Tingting
    He, Yi
    Huang, Yang
    Zhang, Hong
    Tan, Peng
    Li, Zhaoqian
    Zhou, Jiang
    Hu, Linhua
    ADVANCED ENERGY MATERIALS, 2024, 14 (33)
  • [2] Ca2+-intercalation improving the electrochemical cyclicity of the ammonium vanadate cathode for aqueous zinc-ion batteries
    Gai, Zhanghan
    Sun, Mengfei
    Li, Siqi
    Su, Yang
    Wang, Xinlu
    Li, Gaopeng
    Wang, Jinxian
    Yu, Wensheng
    Dong, Xiangting
    Liu, Dongtao
    ELECTROCHIMICA ACTA, 2025, 527
  • [3] Electrochemical activation of vanadium-based cathodes in aqueous zinc-ion batteries: Advances, challenges and prospects
    Liu, Shile
    Liao, Yanxin
    Liu, Tianrui
    Chen, Lingyun
    Zhang, Qichun
    ENERGY STORAGE MATERIALS, 2024, 73
  • [4] Organic molecular intercalation regulated hydrated vanadate cathodes with improved electrochemical properties and fast kinetics for aqueous zinc-ion batteries
    Yi, Chaoqun
    Chen, Linlin
    Ping, Chenqi
    Zhang, Ruihan
    Dong, Caifu
    Huang, Yaoguo
    Wang, Ming
    Zhang, Yali
    JOURNAL OF ENERGY STORAGE, 2024, 100
  • [5] Highly flexible and compressible zinc-ion batteries with superb electrochemical performance enabled by a dual structural regulation strategy
    Zhao, Jiangqi
    Wang, Qunhao
    Tan, Feipeng
    Liu, Ying
    Xue, Xiaolin
    Li, Mei
    Zhang, Jian
    Zhang, Wei
    Lu, Canhui
    ENERGY STORAGE MATERIALS, 2023, 56 : 478 - 488
  • [6] Electrochemical activation of commercial MnO microsized particles for high-performance aqueous zinc-ion batteries
    Wang, Jinjin
    Wang, Jian-Gan
    Liu, Huanyan
    You, Zongyuan
    Wei, Chunguang
    Kang, Feiyu
    JOURNAL OF POWER SOURCES, 2019, 438
  • [7] Advances in materials for all-climate sodium-ion batteries
    Zhu, Xiaobo
    Wang, Lianzhou
    ECOMAT, 2020, 2 (03)
  • [8] A High-Capacity Ammonium Vanadate Cathode for Zinc-Ion Battery
    Li, Qifei
    Rui, Xianhong
    Chen, Dong
    Feng, Yuezhan
    Xiao, Ni
    Gan, Liyong
    Zhang, Qi
    Yu, Yan
    Huang, Shaoming
    NANO-MICRO LETTERS, 2020, 12 (01)
  • [9] A High-Capacity Ammonium Vanadate Cathode for Zinc-Ion Battery
    Qifei Li
    Xianhong Rui
    Dong Chen
    Yuezhan Feng
    Ni Xiao
    Liyong Gan
    Qi Zhang
    Yan Yu
    Shaoming Huang
    Nano-Micro Letters, 2020, 12
  • [10] Cathodes for Zinc-Ion Micro-Batteries: Challenges, Strategies, and Perspectives
    Deng, Ling
    Lin, Qunfang
    Li, Zeyang
    Cao, Juexian
    Sun, Kailing
    Wei, Tongye
    BATTERIES-BASEL, 2025, 11 (02):