Enhancing corrosion resistance of additively manufactured 316L stainless steel by fabricating pillar arrays

被引:10
作者
Liu, Qian [1 ]
Lu, Jiajun [1 ]
Luo, Zairan [1 ]
Yi, Jiang [1 ]
He, Minglin [1 ]
Zhao, Yonghua [1 ]
Wang, Shuai [1 ]
机构
[1] Southern Univ Sci & Technol, Dept Mech & Energy Engn, Shenzhen 518055, Guangdong, Peoples R China
关键词
Cellular structure; Laser powder bed fusion; 316L; Electrochemical etching; Corrosion behavior; MECHANICAL-PROPERTIES; METALLIC COMPONENTS; PROCESS PARAMETERS; HIGH-STRENGTH; MICROSTRUCTURE; BEHAVIOR; AUSTENITE; NETWORK;
D O I
10.1016/j.matdes.2023.111940
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
By using the electrochemical etching technique, pillar arrays with a size of -50-200 nm are fabricated on the surface of 316L manufactured by laser powder bed fusion. The nanopillars morphology is induced by the selective anodic dissolution of dislocation cell walls that are decorated with high local concentrations of Cr/Fe/Ni solute atoms. The appearance of pillar arrays extends the passivation range and increases the pitting potential of 316L in HNO3 solution, while the corrosion current density decreases in NaNO3 solution. The enhanced corrosion resistance was attributed to the coeffect of elimination of corrosionsensitive features and hydrophobicity prompted by electrochemical etching.& COPY; 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
引用
收藏
页数:15
相关论文
共 44 条
[1]   Corrosion behaviour of 316L stainless steel manufactured by selective laser melting [J].
Andreatta, Francesco ;
Lanzutti, Alex ;
Vaglio, Emanuele ;
Totis, Giovanni ;
Sortino, Marco ;
Fedrizzi, Lorenzo .
MATERIALS AND CORROSION-WERKSTOFFE UND KORROSION, 2019, 70 (09) :1633-1645
[2]   On the origin of the high tensile strength and ductility of additively manufactured 316L stainless steel: Multiscale investigation [J].
Barkia, Bassem ;
Aubry, Pascal ;
Haghi-Ashtiani, Paul ;
Auger, Thierry ;
Gosmain, Lionel ;
Schuster, Frederic ;
Maskrot, Hicham .
JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2020, 41 :209-218
[3]   On the enhanced corrosion resistance of a selective laser melted austenitic stainless steel [J].
Chao, Qi ;
Cruz, Victor ;
Thomas, Sebastian ;
Birbilis, Nick ;
Collins, Paul ;
Taylor, Adam ;
Hodgson, Peter D. ;
Fabijanic, Daniel .
SCRIPTA MATERIALIA, 2017, 141 :94-98
[4]   Investigation into the effect of process parameters on microstructural and physical properties of 316L stainless steel parts by selective laser melting [J].
Cherry, J. A. ;
Davies, H. M. ;
Mehmood, S. ;
Lavery, N. P. ;
Brown, S. G. R. ;
Sienz, J. .
INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2015, 76 (5-8) :869-879
[5]   Additive manufacturing of metallic components - Process, structure and properties [J].
DebRoy, T. ;
Wei, H. L. ;
Zuback, J. S. ;
Mukherjee, T. ;
Elmer, J. W. ;
Milewski, J. O. ;
Beese, A. M. ;
Wilson-Heid, A. ;
De, A. ;
Zhang, W. .
PROGRESS IN MATERIALS SCIENCE, 2018, 92 :112-224
[6]   Superhydrophobic aluminum alloy surface: Fabrication, structure, and corrosion resistance [J].
Feng, Libang ;
Zhang, Hongxia ;
Wang, Zilong ;
Liu, Yanhua .
COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2014, 441 :319-325
[7]   Quantitative multiscale correlative microstructure analysis of additive manufacturing of stainless steel 316L processed by selective laser melting [J].
Godec, Matjaz ;
Zaefferer, Stefan ;
Podgornik, Bojan ;
Sinko, Mario ;
Tchernychova, Elena .
MATERIALS CHARACTERIZATION, 2020, 160
[8]   Laser additive manufacturing of metallic components: materials, processes and mechanisms [J].
Gu, D. D. ;
Meiners, W. ;
Wissenbach, K. ;
Poprawe, R. .
INTERNATIONAL MATERIALS REVIEWS, 2012, 57 (03) :133-164
[9]   The cellular boundary with high density of dislocations governed the strengthening mechanism in selective laser melted 316L stainless steel [J].
Hong, Yuanjian ;
Zhou, Chengshuang ;
Zheng, Yuanyuan ;
Zhang, Lin ;
Zheng, Jinyang .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2021, 799
[10]   Metal-assisted electrochemical etching of silicon [J].
Huang, Z. P. ;
Geyer, N. ;
Liu, L. F. ;
Li, M. Y. ;
Zhong, P. .
NANOTECHNOLOGY, 2010, 21 (46)