Effect of Hydrothermal Carbonization on Fuel and Combustion Properties of Shrimp Shell Waste

被引:11
作者
Saha, Swarna [1 ]
Islam, Md Tahmid [1 ]
Calhoun, Joshua [1 ]
Reza, Toufiq [1 ]
机构
[1] Florida Inst Technol, Dept Biomed & Chem Engn & Sci, Melbourne, FL 32901 USA
基金
英国科研创新办公室; 美国国家科学基金会;
关键词
shrimp shell; hydrothermal carbonization; solid fuel; slagging index; fouling index; SEWAGE-SLUDGE; SOLID-FUEL; THERMOGRAVIMETRIC ANALYSIS; CHITIN EXTRACTION; HYDROCHAR FUEL; BIOMASS; PELLETIZATION; OPTIMIZATION; TORREFACTION; PARAMETERS;
D O I
10.3390/en16145534
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Shrimp shell is a popularly consumed seafood around the globe which generates a substantial quantity of solid wet waste. Hydrothermal carbonization (HTC) could be a viable pathway to convert wet shrimp shell waste into energy-dense hydrochar. The present study aims to assess the fuel properties, physicochemical attributes, and combustion properties of shrimp shell hydrochar generated with a wide range of HTC temperatures (110-290 & DEG;C). Results showed that a rise in carbonization rate results in a decline in mass yield to as low as 25.7% with the increase in HTC temperature. Thermogravimetric analysis indicates shrimp shell hydrochars to be more thermally stable than raw dried feedstock. Results from the bomb calorimeter report a maximum HHV of 27.9 MJ/kg for SS-290, showing a 13% increase in energy densification compared to raw shrimp shell. The slagging and fouling indices determined for the hydrochars further assisted in addressing the concern regarding increasing ash content changing from 17.0% to 36.6%. Lower ratings of the slagging index, fouling index, alkali index, and chlorine content for hydrochars at higher temperature indicate the reduced probability of reactor fouling during combustion. The findings of the analysis demonstrate that HTC is a promising approach for transforming shrimp shell waste into a potential fuel replacement.
引用
收藏
页数:15
相关论文
共 78 条
  • [1] Microwave Hydrothermal Carbonization of Human Biowastes
    Afolabi, Oluwasola O. D.
    Sohail, M.
    Thomas, C. P. L.
    [J]. WASTE AND BIOMASS VALORIZATION, 2015, 6 (02) : 147 - 157
  • [2] Measurement of key compositional parameters in two species of energy grass by Fourier transform infrared spectroscopy
    Allison, Gordon G.
    Morris, Catherine
    Hodgson, Edward
    Jones, Jenny
    Kubacki, Michal
    Barraclough, Tim
    Yates, Nicola
    Shield, Ian
    Bridgwater, Anthony V.
    Donnison, Iain S.
    [J]. BIORESOURCE TECHNOLOGY, 2009, 100 (24) : 6428 - 6433
  • [3] [Anonymous], DAT SHEET IKA C 200
  • [4] [Anonymous], 2017, THERMO SCI FURNACES
  • [5] Hydrothermal carbonization of off-specification compost: A byproduct of the organic municipal solid waste treatment
    Basso, Daniele
    Weiss-Hortala, Elsa
    Patuzzi, Francesco
    Castello, Daniele
    Baratieri, Marco
    Fiori, Luca
    [J]. BIORESOURCE TECHNOLOGY, 2015, 182 : 217 - 224
  • [6] Burnham A.K., 2018, ENCY PETROLEUM GEOSC, P1, DOI [10.1007/978-3-319-02330-4_67-1, DOI 10.1007/978-3-319-02330-4_67-1]
  • [7] Transitional adsorption and partition of nonpolar and polar aromatic contaminants by biochars of pine needles with different pyrolytic temperatures
    Chen, Baoliang
    Zhou, Dandan
    Zhu, Lizhong
    [J]. ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2008, 42 (14) : 5137 - 5143
  • [8] Conversion of sweet potato waste to solid fuel via hydrothermal carbonization
    Chen, Xinfei
    Ma, Xiaoqian
    Peng, Xiaowei
    Lin, Yousheng
    Yao, Zhongliang
    [J]. BIORESOURCE TECHNOLOGY, 2018, 249 : 900 - 907
  • [9] Coates J., 2006, ENCY ANAL CHEM, DOI [10.1002/9780470027318.a5606, DOI 10.1002/9780470027318.A5606]
  • [10] Predicting heating values of lignocellulosics and carbonaceous materials from proximate analysis
    Cordero, T
    Marquez, F
    Rodriguez-Mirasol, J
    Rodriguez, JJ
    [J]. FUEL, 2001, 80 (11) : 1567 - 1571