Biophysical ordering transitions underlie genome 3D re-organization during cricket spermiogenesis

被引:2
|
作者
Orsi, Guillermo A. [1 ]
Tortora, Maxime M. C. [2 ,6 ]
Horard, Beatrice [2 ]
Baas, Dominique [3 ]
Kleman, Jean-Philippe [4 ]
Bucevicius, Jonas [5 ]
Lukinavicius, Grazvydas [5 ]
Jost, Daniel [2 ]
Loppin, Benjamin [2 ]
机构
[1] Univ Grenoble Alpes, Inst Adv Biosci, Inserm U 1209, CNRS UMR 5309, F-38000 Grenoble, France
[2] Univ Claude Bernard Lyon 1, Ecole Normale Super Lyon, Lab Biol & Modelisat Cellule, CNRS UMR5239,Inserm U1293, Lyon, France
[3] Univ Claude Bernard Lyon 1, Inst NeuroMyoGene, Lab MeLiS, Inserm U 1314,CNRS UMR 52684, F-52684 Lyon, France
[4] Univ Grenoble Alpes, Inst Biol Structurale, UMR5075, CEA,CNRS, Grenoble, France
[5] Max Planck Inst Multidisciplinary Sci, Dept NanoBiophoton, Chromatin Labeling & Imaging Grp, Gottingen, Germany
[6] Univ Southern Calif, Dept Quantitat & Computat Biol, Los Angeles, CA USA
关键词
MOLECULAR-DYNAMICS SIMULATIONS; NUCLEAR-ENVELOPE; DNA CONDENSATION; SPERM MORPHOLOGY; PHASE-SEPARATION; HISTONE H4; IN-VIVO; CHROMATIN; ORGANIZATION; ACETYLATION;
D O I
10.1038/s41467-023-39908-1
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Spermiogenesis is a radical process of differentiation whereby sperm cells acquire a compact and specialized morphology to cope with the constraints of sexual reproduction while preserving their main cargo, an intact copy of the paternal genome. In animals, this often involves the replacement of most histones by sperm-specific nuclear basic proteins (SNBPs). Yet, how the SNBP-structured genome achieves compaction and accommodates shaping remain largely unknown. Here, we exploit confocal, electron and super-resolution microscopy, coupled with polymer modeling to identify the higher-order architecture of sperm chromatin in the needle-shaped nucleus of theemerging model cricket Gryllus bimaculatus. Accompanying spermatid differentiation, the SNBP-based genome is strikingly reorganized as similar to 25nm-thick fibers orderly coiled along the elongated nucleus axis. This chromatin spool is further found to achieve large-scale helical twisting in the final stages of spermiogenesis, favoring its ultracompaction. We reveal that these dramatic transitions may be recapitulated by a surprisingly simple biophysical principle based on a nucleated rigidification of chromatin linked to the histone-to-SNBP transition within a confined nuclear space. Our work highlights a unique, liquid crystal like mode of higher-order genome organization in ultracompact cricket sperm, and establishes a multidisciplinary methodological framework to explore the diversity of non-canonical modes of DNA organization.
引用
收藏
页数:16
相关论文
共 44 条
  • [21] Genetic-epigenetic interplay in the determination of plant 3D genome organization
    He, Xiaoning
    Lopes, Chloe Dias
    Pereyra-Bistrain, Leonardo, I
    Huang, Ying
    An, Jing
    Chaouche, Rim Brik
    Zalzale, Hugo
    Wang, Qingyi
    Ma, Xing
    Antunez-Sanchez, Javier
    Bergounioux, Catherine
    Piquerez, Sophie
    Fragkostefanakis, Sotirios
    Zhang, Yijing
    Zheng, Shaojian
    Crespi, Martin
    Mahfouz, Magdy M.
    Mathieu, Olivier
    Ariel, Federico
    Gutierrez-Marcos, Jose
    Li, Xingwang
    Bouche, Nicolas
    Raynaud, Cecile
    Latrasse, David
    Benhamed, Moussa
    NUCLEIC ACIDS RESEARCH, 2024, 52 (17) : 10220 - 10234
  • [22] Genome-Scale Imaging of the 3D Organization and Transcriptional Activity of Chromatin
    Su, Jun-Han
    Zheng, Pu
    Kinrot, Seon S.
    Bintu, Bogdan
    Zhuang, Xiaowei
    CELL, 2020, 182 (06) : 1641 - +
  • [23] The Birth of the 3D Genome during Early Embryonic Development
    Hug, Clemens B.
    Vaquerizas, Juan M.
    TRENDS IN GENETICS, 2018, 34 (12) : 903 - 914
  • [24] Lineage-specific 3D genome organization is assembled at multiple scales by IKAROS
    Hu, Yeguang
    Figueroa, Daniela Salgado
    Zhang, Zhihong
    Veselits, Margaret
    Bhattacharyya, Sourya
    Kashiwagi, Mariko
    Clark, Marcus R.
    Morgan, Bruce A.
    Ay, Ferhat
    Georgopoulos, Katia
    CELL, 2023, 186 (24) : 5269 - +
  • [25] Evolution of the Genome 3D Organization: Comparison of Fused and Segregated Globin Gene Clusters
    Kovina, Anastasia P.
    Petrova, Natalia V.
    Gushchanskaya, Ekaterina S.
    Dolgushin, Konstantin V.
    Gerasimov, Evgeny S.
    Galitsyna, Aleksandra A.
    Penin, Alexey A.
    Flyamer, Ilya M.
    Ioudinkova, Elena S.
    Gavrilov, Alexey A.
    Vassetzky, Yegor S.
    Ulianov, Sergey V.
    Iarovaia, Olga V.
    Razin, Sergey V.
    MOLECULAR BIOLOGY AND EVOLUTION, 2017, 34 (06) : 1492 - 1504
  • [26] The interplay of 3D genome organization with UV-induced DNA damage and repair
    Akkose, Umit
    Adebali, Ogun
    JOURNAL OF BIOLOGICAL CHEMISTRY, 2023, 299 (05)
  • [27] Multiscale 3D Genome Rewiring during Mouse Neural Development
    Bonev, Boyan
    Cohen, Netta Mendelson
    Szabo, Quentin
    Fritsch, Lauriane
    Papadopoulos, Giorgio L.
    Lubling, Yaniv
    Xu, Xiaole
    Lv, Xiaodan
    Hugnot, Jean-Philippe
    Tanay, Amos
    Cavalli, Giacomo
    CELL, 2017, 171 (03) : 557 - +
  • [28] Progerin impairs 3D genome organization and induces fragile telomeres by limiting the dNTP pools
    Kychygina, Anna
    Dall'Osto, Marina
    Allen, Joshua A. M.
    Cadoret, Jean-Charles
    Piras, Vincent
    Pickett, Hilda A.
    Crabbe, Laure
    SCIENTIFIC REPORTS, 2021, 11 (01)
  • [29] Microrheology for Hi-C Data Reveals the Spectrum of the Dynamic 3D Genome Organization
    Shinkai, Soya
    Sugawara, Takeshi
    Miura, Hisashi
    Hiratani, Ichiro
    Onami, Shuichi
    BIOPHYSICAL JOURNAL, 2020, 118 (09) : 2220 - 2228
  • [30] Multiscale 3D genome organization underlies ILC2 ontogenesis and allergic airway inflammation
    Michieletto, Michael F.
    Tello-Cajiao, John J.
    Mowel, Walter K.
    Chandra, Aditi
    Yoon, Sora
    Joannas, Leonel
    Clark, Megan L.
    Jimenez, Monica T.
    Wright, Jasmine M.
    Lundgren, Patrick
    Williams, Adam
    Thaiss, Christoph A.
    Vahedi, Golnaz
    Henao-Mejia, Jorge
    NATURE IMMUNOLOGY, 2023, 24 (01) : 42 - +