Adaptive hyperparameter optimization for black-box adversarial attack

被引:0
|
作者
Guan, Zhenyu [1 ]
Zhang, Lixin [1 ]
Huang, Bohan [1 ]
Zhao, Bihe [1 ]
Bian, Song [1 ]
机构
[1] Beihang Univ, Sch Cyber Sci & Technol, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
Deep learning; Adversarial attack; Reinforcement learning; Hyperparameter optimization; NETWORKS;
D O I
10.1007/s10207-023-00716-9
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The study of adversarial attacks is crucial in the design of robust neural network models. In this work, we propose a hyperparameter optimization framework for black-box adversarial attacks. We observe that hyperparameters are extremely important to enhance the query efficiency of many black-box adversarial attack methods. Hence, we propose an adaptive hyperparameter tuning framework such that, in each query iteration, the attacker can adaptively selects the hyperparameter configuration based on the feedback from the victim to improve the attack success rate and query efficiency of the attack algorithm. The experiment results show, by adaptively tuning the attack hyperparameters, our technique outperforms the original algorithm, where the query efficiency is improved by 33.63% on the NES algorithm for untargeted attacks, 44.47% on the Bandits algorithm for untargeted attacks, and 32.24% improvement on the Bandits algorithm for targeted attacks.
引用
收藏
页码:1765 / 1779
页数:15
相关论文
共 50 条
  • [21] An Optimized Black-Box Adversarial Simulator Attack Based on Meta-Learning
    Chen, Zhiyu
    Ding, Jianyu
    Wu, Fei
    Zhang, Chi
    Sun, Yiming
    Sun, Jing
    Liu, Shangdong
    Ji, Yimu
    ENTROPY, 2022, 24 (10)
  • [22] Black-Box Adversarial Attack on Graph Neural Networks With Node Voting Mechanism
    Wen, Liangliang
    Liang, Jiye
    Yao, Kaixuan
    Wang, Zhiqiang
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2024, 36 (10) : 5025 - 5038
  • [23] A Black-Box Adversarial Attack via Deep Reinforcement Learning on the Feature Space
    Li, Lyue
    Rezapour, Amir
    Tzeng, Wen-Guey
    2021 IEEE CONFERENCE ON DEPENDABLE AND SECURE COMPUTING (DSC), 2021,
  • [24] TAGA: A Transfer-based Black-box Adversarial Attack with Genetic Algorithms
    Huang, Liang-Jung
    Yu, Tian-Li
    PROCEEDINGS OF THE 2022 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE (GECCO'22), 2022, : 712 - 720
  • [25] Universal Black-Box Adversarial Attack on Deep Learning for Specific Emitter Identification
    Chen, Kailun
    Zhang, Yibin
    Cai, Zhenxin
    Wang, Yu
    Ye, Chen
    Lin, Yun
    Gui, Guan
    2024 IEEE 99TH VEHICULAR TECHNOLOGY CONFERENCE, VTC2024-SPRING, 2024,
  • [26] RLVS: A Reinforcement Learning-Based Sparse Adversarial Attack Method for Black-Box Video Recognition
    Song, Jianxin
    Yu, Dan
    Teng, Hongfei
    Chen, Yongle
    ELECTRONICS, 2025, 14 (02):
  • [27] Sparse Black-Box Video Attack with Reinforcement Learning
    Wei, Xingxing
    Yan, Huanqian
    Li, Bo
    INTERNATIONAL JOURNAL OF COMPUTER VISION, 2022, 130 (06) : 1459 - 1473
  • [28] Coreset Learning-Based Sparse Black-Box Adversarial Attack for Video Recognition
    Chen, Jiefu
    Chen, Tong
    Xu, Xing
    Zhang, Jingran
    Yang, Yang
    Shen, Heng Tao
    IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2024, 19 : 1547 - 1560
  • [29] An Approximated Gradient Sign Method Using Differential Evolution for Black-Box Adversarial Attack
    Li, Chao
    Wang, Handing
    Zhang, Jun
    Yao, Wen
    Jiang, Tingsong
    IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2022, 26 (05) : 976 - 990
  • [30] DeeBBAA: A Benchmark Deep Black-Box Adversarial Attack Against CyberPhysical Power Systems
    Bhattacharjee, Arnab
    Bai, Guangdong
    Tushar, Wayes
    Verma, Ashu
    Mishra, Sukumar
    Saha, Tapan K.
    IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (24): : 40670 - 40688