Structure-Preserving Finite-Element Schemes for the Euler-Poisson Equations

被引:4
|
作者
Maier, Matthias [1 ]
Shadid, John N. [2 ,3 ]
Tomas, Ignacio [4 ]
机构
[1] Texas A&M Univ, Dept Math, 3368 TAMU, College Stn, TX 77843 USA
[2] Sandia Natl Labs, POB 5800,MS 1320, Albuquerque, NM 87185 USA
[3] Univ New Mexico, Dept Math & Stat, MSC01 1115, Albuquerque, NM 87131 USA
[4] Texas Tech Univ, Dept Math & Stat, 2500 Broadway, Lubbock, TX 79409 USA
基金
美国国家科学基金会;
关键词
Euler-Poisson equations; operator splitting; invariant domain preservation; discrete energy balance; NUMERICAL APPROXIMATION; INVARIANT DOMAINS; HYDRODYNAMICS; DISCRETIZATION; SIMULATIONS; ENTROPY; MODELS; SYSTEM; ENERGY;
D O I
10.4208/cicp.OA-2022-0205
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We discuss structure-preserving numerical discretizations for repulsive and attractive Euler-Poisson equations that find applications in fluid-plasma and self -gravitation modeling. The scheme is fully discrete and structure preserving in the sense that it maintains a discrete energy law, as well as hyperbolic invariant domain properties, such as positivity of the density and a minimum principle of the specific entropy. A detailed discussion of algorithmic details is given, as well as proofs of the claimed properties. We present computational experiments corroborating our analyti-cal findings and demonstrating the computational capabilities of the scheme.
引用
收藏
页码:647 / 691
页数:45
相关论文
共 50 条
  • [31] Solitary Wave Interactions of the Euler-Poisson Equations
    Haragus, Mariana
    Nicholls, David P.
    Sattinger, David H.
    JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2003, 5 (01) : 92 - 118
  • [32] Solitary Wave Interactions of the Euler-Poisson Equations
    M. Haragus
    D. P. Nicholls
    D. H. Sattinger
    Journal of Mathematical Fluid Mechanics, 2003, 5 : 92 - 118
  • [33] Blowup phenomena of solutions to Euler-Poisson equations
    Deng, YB
    Xiang, JL
    Yang, T
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2003, 286 (01) : 295 - 306
  • [34] Calculation of Normal Forms of the Euler-Poisson Equations
    Bruno, Alexander D.
    Edneral, Victor F.
    COMPUTER ALGEBRA IN SCIENTIFIC COMPUTING, CASC 2012, 2012, 7442 : 60 - 71
  • [35] On the Steady State Relativistic Euler-Poisson Equations
    Mai, La-Su
    Li, Jingyu
    Zhang, Kaijun
    ACTA APPLICANDAE MATHEMATICAE, 2013, 125 (01) : 135 - 157
  • [36] Solutions of Euler-Poisson Equations¶for Gaseous Stars
    Yinbin Deng
    Tai-Ping Liu
    Tong Yang
    Zheng-an Yao
    Archive for Rational Mechanics and Analysis, 2002, 164 : 261 - 285
  • [37] SINGULAR POINTS OF SOLUTIONS OF THE EULER-POISSON EQUATIONS
    BELYAEV, OV
    DOPOVIDI AKADEMII NAUK UKRAINSKOI RSR SERIYA A-FIZIKO-MATEMATICHNI TA TECHNICHNI NAUKI, 1989, (05): : 3 - 6
  • [38] Convergence of compressible Euler-Poisson system to incompressible Euler equations
    Wang, Shu
    Yang, Jianwei
    Luo, Dang
    APPLIED MATHEMATICS AND COMPUTATION, 2010, 216 (11) : 3408 - 3418
  • [39] On the Steady State Relativistic Euler-Poisson Equations
    La-Su Mai
    Jingyu Li
    Kaijun Zhang
    Acta Applicandae Mathematicae, 2013, 125 : 135 - 157
  • [40] ON FINITE-ELEMENT METHODS FOR THE EULER-POISSON-DARBOUX EQUATION
    GENIS, AM
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 1984, 21 (06) : 1080 - 1106