Structure-Preserving Finite-Element Schemes for the Euler-Poisson Equations

被引:4
作者
Maier, Matthias [1 ]
Shadid, John N. [2 ,3 ]
Tomas, Ignacio [4 ]
机构
[1] Texas A&M Univ, Dept Math, 3368 TAMU, College Stn, TX 77843 USA
[2] Sandia Natl Labs, POB 5800,MS 1320, Albuquerque, NM 87185 USA
[3] Univ New Mexico, Dept Math & Stat, MSC01 1115, Albuquerque, NM 87131 USA
[4] Texas Tech Univ, Dept Math & Stat, 2500 Broadway, Lubbock, TX 79409 USA
基金
美国国家科学基金会;
关键词
Euler-Poisson equations; operator splitting; invariant domain preservation; discrete energy balance; NUMERICAL APPROXIMATION; INVARIANT DOMAINS; HYDRODYNAMICS; DISCRETIZATION; SIMULATIONS; ENTROPY; MODELS; SYSTEM; ENERGY;
D O I
10.4208/cicp.OA-2022-0205
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We discuss structure-preserving numerical discretizations for repulsive and attractive Euler-Poisson equations that find applications in fluid-plasma and self -gravitation modeling. The scheme is fully discrete and structure preserving in the sense that it maintains a discrete energy law, as well as hyperbolic invariant domain properties, such as positivity of the density and a minimum principle of the specific entropy. A detailed discussion of algorithmic details is given, as well as proofs of the claimed properties. We present computational experiments corroborating our analyti-cal findings and demonstrating the computational capabilities of the scheme.
引用
收藏
页码:647 / 691
页数:45
相关论文
共 71 条
  • [31] Evans LC., 2010, Partial Differential Equations, V2
  • [32] Gasser I, 1997, ASYMPTOTIC ANAL, V14, P97
  • [33] Girault V ..., 2012, Finite Element Methods for Navier-Stokes Equations: Theory and Algorithms
  • [34] On the implementation of a robust and efficient finite element-based parallel solver for the compressible Navier-Stokes equations
    Guermond, Jean-Luc
    Kronbichler, Martin
    Maier, Matthias
    Popov, Bojan
    Tomas, Ignacio
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2022, 389
  • [35] Second-order invariant domain preserving approximation of the compressible Navier-Stokes equations
    Guermond, Jean-Luc
    Maier, Matthias
    Popav, Bojan
    Tomas, Ignacio
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2021, 375 (375)
  • [36] Invariant domain preserving discretization-independent schemes and convex limiting for hyperbolic systems
    Guermond, Jean-Luc
    Popov, Bojan
    Tomas, Ignacio
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2019, 347 : 143 - 175
  • [37] SECOND-ORDER INVARIANT DOMAIN PRESERVING APPROXIMATION OF THE EULER EQUATIONS USING CONVEX LIMITING
    Guermond, Jean-Luc
    Nazarov, Murtazo
    Popov, Bojan
    Tomas, Ignacio
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2018, 40 (05) : A3211 - A3239
  • [38] INVARIANT DOMAINS AND SECOND-ORDER CONTINUOUS FINITE ELEMENT APPROXIMATION FOR SCALAR CONSERVATION EQUATIONS
    Guermond, Jean-Luc
    Popov, Bojan
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2017, 55 (06) : 3120 - 3146
  • [39] INVARIANT DOMAINS AND FIRST-ORDER CONTINUOUS FINITE ELEMENT APPROXIMATION FOR HYPERBOLIC SYSTEMS
    Guermond, Jean-Luc
    Popov, Bojan
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2016, 54 (04) : 2466 - 2489
  • [40] Fast estimation from above of the maximum wave speed in the Riemann problem for the Euler equations
    Guermond, Jean-Luc
    Popov, Bojan
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2016, 321 : 908 - 926