Structure-Preserving Finite-Element Schemes for the Euler-Poisson Equations

被引:4
作者
Maier, Matthias [1 ]
Shadid, John N. [2 ,3 ]
Tomas, Ignacio [4 ]
机构
[1] Texas A&M Univ, Dept Math, 3368 TAMU, College Stn, TX 77843 USA
[2] Sandia Natl Labs, POB 5800,MS 1320, Albuquerque, NM 87185 USA
[3] Univ New Mexico, Dept Math & Stat, MSC01 1115, Albuquerque, NM 87131 USA
[4] Texas Tech Univ, Dept Math & Stat, 2500 Broadway, Lubbock, TX 79409 USA
基金
美国国家科学基金会;
关键词
Euler-Poisson equations; operator splitting; invariant domain preservation; discrete energy balance; NUMERICAL APPROXIMATION; INVARIANT DOMAINS; HYDRODYNAMICS; DISCRETIZATION; SIMULATIONS; ENTROPY; MODELS; SYSTEM; ENERGY;
D O I
10.4208/cicp.OA-2022-0205
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We discuss structure-preserving numerical discretizations for repulsive and attractive Euler-Poisson equations that find applications in fluid-plasma and self -gravitation modeling. The scheme is fully discrete and structure preserving in the sense that it maintains a discrete energy law, as well as hyperbolic invariant domain properties, such as positivity of the density and a minimum principle of the specific entropy. A detailed discussion of algorithmic details is given, as well as proofs of the claimed properties. We present computational experiments corroborating our analyti-cal findings and demonstrating the computational capabilities of the scheme.
引用
收藏
页码:647 / 691
页数:45
相关论文
共 71 条
  • [1] CASTRO: A NEW COMPRESSIBLE ASTROPHYSICAL SOLVER. I. HYDRODYNAMICS AND SELF-GRAVITY
    Almgren, A. S.
    Beckner, V. E.
    Bell, B.
    Day, M. S.
    Howell, L. H.
    Joggerst, C. C.
    Lijewski, M. J.
    Nonaka, A.
    Singer, M.
    Zingale, M.
    [J]. ASTROPHYSICAL JOURNAL, 2010, 715 (02) : 1221 - 1238
  • [2] Alnaes M., 2015, Archive of Numerical Software, V3
  • [3] MFEM: A modular finite element methods library
    Anderson, Robert
    Andrej, Julian
    Barker, Andrew
    Bramwell, Jamie
    Camier, Jean-Sylvain
    Cerveny, Jakub
    Dobrev, Veselin
    Dudouit, Yohann
    Fisher, Aaron
    Kolev, Tzanio
    Pazner, Will
    Stowell, Mark
    Tomov, Vladimir
    Akkerman, Ido
    Dahm, Johann
    Medina, David
    Zampini, Stefano
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2021, 81 : 42 - 74
  • [4] The deal. II library, Version 9.3
    Arndt, Daniel
    Bangerth, Wolfgang
    Blais, Bruno
    Fehling, Marc
    Gassmoller, Rene
    Heister, Timo
    Heltai, Luca
    Koecher, Uwe
    Kronbichler, Martin
    Maier, Matthias
    Munch, Peter
    Pelteret, Jean-Paul
    Proell, Sebastian
    Simon, Konrad
    Turcksin, Bruno
    Wells, David
    Zhang, Jiaqi
    [J]. JOURNAL OF NUMERICAL MATHEMATICS, 2021, 29 (03) : 171 - 186
  • [5] The DEAL.II finite element library: Design, features, and insights
    Arndt, Daniel
    Bangerth, Wolfgang
    Davydov, Denis
    Heister, Timo
    Heltai, Luca
    Kronbichler, Martin
    Maier, Matthias
    Pelteret, Jean-Paul
    Turcksin, Bruno
    Wells, David
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2021, 81 : 407 - 422
  • [6] Approximation by quadrilateral finite elements
    Arnold, DN
    Boffi, D
    Falk, RS
    [J]. MATHEMATICS OF COMPUTATION, 2002, 71 (239) : 909 - 922
  • [7] Arnold DN, 2006, ACT NUMERIC, V15, P1, DOI 10.1017/S0962492906210018
  • [8] On differentiable local bounds preserving stabilization for Euler equations
    Badia, Santiago
    Bonilla, Jesus
    Mabuza, Sibusiso
    Shadid, John N.
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2020, 370 (370)
  • [9] Derivation of the Schrodinger-Poisson equation from the quantum N-body problem
    Bardos, C
    Erdös, L
    Golse, F
    Mauser, N
    Yau, HT
    [J]. COMPTES RENDUS MATHEMATIQUE, 2002, 334 (06) : 515 - 520
  • [10] Bittencourt J.A, 2004, FUNDAMENTALS PLASMA