A comprehensive review of electrochemical reduction of CO2 to methanol: Technical and design aspects

被引:35
作者
Wiranarongkorn, Kunlanan [1 ,2 ]
Eamsiri, Kornkamol
Chen, Yong-Song [3 ]
Arpornwichanop, Amornchai [1 ,4 ]
机构
[1] Chulalongkorn Univ, Fac Engn, Ctr Excellence Proc & Energy Syst Engn, Dept Chem Engn, Bangkok 10330, Thailand
[2] Kasetsart Univ, Fac Sci Sriracha, Dept Basic Sci & Phys Educ, Bangkok 20230, Thailand
[3] Natl Chung Cheng Univ, Adv Inst Mfg High tech Innovat, Dept Mech Engn, Chiayi 621301, Taiwan
[4] Chulalongkorn Univ, Fac Engn, Biocircular Green econ Technol & Engn Ctr, Dept Chem Engn, Bangkok 10330, Thailand
关键词
Electrochemical reduction; CO(2 )reduction; Methanol; CO2; utilization; GAS-DIFFUSION ELECTRODES; CARBON-DIOXIDE; PHOTOELECTROCHEMICAL REDUCTION; PHOTOELECTROCATALYTIC REDUCTION; ELECTROCATALYTIC REDUCTION; SELECTIVE CONVERSION; METAL-ELECTRODES; RECENT PROGRESS; DIMETHYL ETHER; IONIC LIQUIDS;
D O I
10.1016/j.jcou.2023.102477
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The electrochemical reduction of CO2 (ERC) is a promising CO2 utilization technology that can convert CO2 into a wide variety of fuels and chemicals via electrochemical reactions. Among the various products that can be produced from ERC, methanol is a potential liquid product that can be utilized as fuel and an intermediate feedstock for fuel and chemical production. Recently, many researchers have shown interest in the ERC process for selective methanol production. The development of ERC technology for methanol production has been done both in experimental studies, particularly electrocatalyst design and development, and in process design and analysis to overcome challenges such as low CO2 solubility, low product selectivity, inefficient catalysts, mass transfer limitations, high overpotentials, and technology commercialization. This review aims to present progress in studies on the production of methanol via ERC. An overview of the CO2 conversion process involving CO2 hydrogenation, ERC, and CO2 photoelectrochemical reduction is first described. Then, key factors affecting the ERC, such as the electrocatalyst, electrolyte, and operating conditions, are analyzed. Furthermore, process design and modeling analyses are discussed to consider the commercialization of the ERC to form methanol. Finally, suggestions for future research are given in the final section of this review.
引用
收藏
页数:17
相关论文
共 50 条
  • [31] Electrochemical reduction of CO2 to methanol with synthesized Cu2O nanocatalyst: Study of the selectivity
    Hazarika, Jenasree
    Manna, Mriganka Sekhar
    ELECTROCHIMICA ACTA, 2019, 328
  • [32] Electrochemical reduction of CO2 into formate/formic acid: A review of cell design and operation
    Ewis, Dina
    Arsalan, Muhammad
    Khaled, Mazen
    Pant, Deepak
    Ba-Abbad, Muneer M.
    Amhamed, Abdulkarem
    El-Naas, Muftah H.
    SEPARATION AND PURIFICATION TECHNOLOGY, 2023, 316
  • [33] Comparative Technoeconomic Analysis of Pathways for Electrochemical Reduction of CO2 with Methanol to Produce Methyl Formate
    Spurgeon, Joshua M.
    Theaker, Nolan
    Phipps, Christine A.
    Uttarwar, Sandesh S.
    Grapperhaus, Craig A.
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2022, 10 (38) : 12882 - 12894
  • [34] Looking Back and Looking Ahead in Electrochemical Reduction of CO2
    Lee, Seunghwa
    Choi, Minjun
    Lee, Jaeyoung
    CHEMICAL RECORD, 2020, 20 (02) : 89 - 101
  • [35] Research status and trend of electrolytes in the CO2 electrochemical reduction
    Jiang, Chongyang
    Feng, Jiaqi
    Zeng, Shaojuan
    Zhang, Xiangping
    CHINESE SCIENCE BULLETIN-CHINESE, 2021, 66 (07): : 716 - 727
  • [36] Role of Mass Transport in Electrochemical CO2 Reduction to Methanol Using Immobilized Cobalt Phthalocyanine
    Chan, Thomas
    Kong, Calton J.
    King, Alex J.
    Babbe, Finn
    Prabhakar, Rajiv Ramanujam
    Kubiak, Clifford P.
    Ager, Joel W.
    ACS APPLIED ENERGY MATERIALS, 2024, 7 (08) : 3091 - 3098
  • [37] Effects of Anion Identity and Concentration on Electrochemical Reduction of CO2
    Resasco, Joaquin
    Lum, Yanwei
    Clark, Ezra
    Zeledon, Jose Zamora
    Bell, Alexis T.
    CHEMELECTROCHEM, 2018, 5 (07): : 1064 - 1072
  • [38] Criteria and cutting-edge catalysts for CO2 electrochemical reduction at the industrial scale
    Al Harthi, Asma
    Al Abri, Mohammed
    Younus, Hussein A.
    Al Hajri, Rashid
    JOURNAL OF CO2 UTILIZATION, 2024, 83
  • [39] Ionic liquids for CO2 electrochemical reduction
    Li, Fangfang
    Mocci, Francesca
    Zhang, Xiangping
    Ji, Xiaoyan
    Laaksonen, Aatto
    CHINESE JOURNAL OF CHEMICAL ENGINEERING, 2021, 31 : 75 - 93
  • [40] Molecular tuning for electrochemical CO2 reduction
    Zhang, Jincheng
    Ding, Jie
    Liu, Yuhang
    Su, Chenliang
    Yang, Hongbin
    Huang, Yanqiang
    Liu, Bin
    JOULE, 2023, 7 (08) : 1700 - 1744