Delivering a toxic metal to the active site of urease

被引:4
|
作者
Nim, Yap Shing [1 ]
Fong, Ivan Yu Hang [2 ]
Deme, Justin [2 ,3 ]
Tsang, Ka Lung [1 ]
Caesar, Joseph [2 ,3 ]
Johnson, Steven [2 ,3 ]
Pang, Longson Tsz Hin [1 ]
Yuen, Nicholas Man Hon [1 ]
Ng, Tin Long Chris [1 ]
Choi, Tung [1 ]
Wong, Yakie Yat Hei [1 ]
Lea, Susan M. [2 ,3 ]
Wong, Kam-Bo [1 ]
机构
[1] Chinese Univ Hong Kong, Ctr Prot Sci & Crystallog, Sch Life Sci, State Key Lab Agrobiotechnol, Hong Kong, Peoples R China
[2] Univ Oxford, Sir William Dunn Sch Pathol, South Parks Rd, Oxford OX1 3RE, England
[3] NCI, Ctr Struct Biol, CCR, Boyles St, Frederick, MD 21702 USA
基金
英国医学研究理事会; 英国惠康基金;
关键词
CRYSTAL-STRUCTURE; NICKEL-TRANSFER; UCSF CHIMERA; PROTEIN; UREF; ACTIVATION; COMPLEX; IDENTIFICATION; NI2+;
D O I
10.1126/sciadv.adf7790
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Urease is a nickel (Ni) enzyme that is essential for the colonization of Helicobacter pylori in the human stomach. To solve the problem of delivering the toxic Ni ion to the active site without diffusing into the cytoplasm, cells have evolved metal carrier proteins, or metallochaperones, to deliver the toxic ions to specific protein complexes. Ni delivery requires urease to form an activation complex with the urease accessory proteins UreFD and UreG. Here, we determined the cryo-electron microscopy structures of H. pylori UreFD/urease and Klebsiella pneumoniae UreD/urease complexes at 2.3- and 2.7-angstrom resolutions, respectively. Combining structural, mutagenesis, and biochemical studies, we show that the formation of the activation complex opens a 100-angstrom-long tunnel, where the Ni ion is delivered through UreFD to the active site of urease.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] The toxic action mechanism of urease
    Carnoe, P
    Gerard, P
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES, 1919, 169 : 88 - 90
  • [22] Structures of the Klebsiella aerogenes urease apoenzyme and two active-site mutants
    Jabri, E
    Karplus, PA
    BIOCHEMISTRY, 1996, 35 (33) : 10616 - 10626
  • [23] Dinickel complexes of disubstituted benzoate polydentate ligands: mimics for the active site of urease
    Lee, Way-Zen
    Tseng, Huan-Sheng
    Kua, Meng-Yu
    Kuob, Ting-Shen
    DALTON TRANSACTIONS, 2008, 19 (19) : 2538 - 2541
  • [24] Purification of toxic protease from Brevibacterium otitidis KB76 with both metal and hydrosulfuryl at the active site
    Essam Kotb
    Maher I. Abouel-Hawa
    Eman Y. Tohamy
    Khaled El-Msalamy
    Biologia, 2013, 68 : 797 - 802
  • [25] Purification of toxic protease from Brevibacterium otitidis KB76 with both metal and hydrosulfuryl at the active site
    Kotb, Essam
    Abouel-Hawa, Maher I.
    Tohamy, Eman Y.
    El-Msalamy, Khaled
    BIOLOGIA, 2013, 68 (05) : 797 - 802
  • [26] Delivering the metal
    Clifford, Des
    Mining Magazine, 2005, 193 (06):
  • [27] Development of METAL-ACTIVE SITE and ZINCCLUSTER tool to predict active site pockets
    Ajitha, M.
    Sundar, K.
    Arul Mugilan, S.
    Arumugam, S.
    PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 2018, 86 (03) : 322 - 331
  • [28] In Silico study of the active site of Helicobacter pylori urease and its inhibition by hydroxamic acids
    Arora, Richa
    Issar, Upasana
    Kakkar, Rita
    JOURNAL OF MOLECULAR GRAPHICS & MODELLING, 2018, 83 : 64 - 73
  • [29] Nickel complexes of carboxylate-containing polydentate ligands as models for the active site of urease
    Carlsson, H
    Haukka, M
    Bousseksou, A
    Latour, JM
    Nordlander, E
    INORGANIC CHEMISTRY, 2004, 43 (26) : 8252 - 8262
  • [30] The nature of the active site in heterogeneous metal catalysis
    Norskov, Jens K.
    Bligaard, Thomas
    Hvolbaek, Britt
    Abild-Pedersen, Frank
    Chorkendorff, Ib
    Christensen, Claus H.
    CHEMICAL SOCIETY REVIEWS, 2008, 37 (10) : 2163 - 2171