Generalizability of Risk Stratification Algorithms for Exacerbations in COPD

被引:8
作者
Ho, Joseph Khoa [1 ,2 ]
Safari, Abdollah [5 ]
Adibi, Amin [1 ,2 ]
Sin, Don D. [3 ,4 ]
Johnson, Kate [1 ,2 ]
Sadatsafavi, Mohsen [1 ,2 ]
机构
[1] Univ British Columbia, Resp Evaluat Sci Program, Vancouver, BC, Canada
[2] Univ British Columbia, Collaborat Outcomes Res & Evaluat, Vancouver, BC, Canada
[3] Univ British Columbia, Fac Pharmaceut Sci, Ctr Heart Lung Innovat, Vancouver, BC, Canada
[4] Univ British Columbia, Dept Med Respirol, Vancouver, BC, Canada
[5] Univ Tehran, Dept Math Stat & Comp Sci, Tehran, Iran
基金
加拿大健康研究院;
关键词
clinical prediction modeling; clinical utility; COPD; precision medicine; risk stratification; OBSTRUCTIVE PULMONARY-DISEASE; VALIDATION; SURVIVAL; MODELS; FREQUENCY; DIAGNOSIS;
D O I
10.1016/j.chest.2022.11.041
中图分类号
R4 [临床医学];
学科分类号
1002 ; 100602 ;
摘要
BACKGROUND: Contemporary management of COPD relies on exacerbation history to risk -stratify patients for future exacerbations. Multivariable prediction models can improve the performance of risk stratification. However, the clinical utility of risk stratification can vary from one population to another.RESEARCH QUESTION: How do two validated exacerbation risk prediction models (Acute COPD Exacerbation Prediction Tool [ACCEPT] and the Bertens model) compared with exacerbation history alone perform in different patient populations?STUDY DESIGN AND METHODS: We used data from three clinical studies representing pop-ulations at different levels of moderate to severe exacerbation risk: the Study to Understand Mortality and Morbidity in COPD (SUMMIT; N = 2,421; annual risk, 0.22), the Long-term Oxygen Treatment Trial (LOTT; N = 595; annual risk, 0.38), and Towards a Revolution in COPD Health (TORCH; N = 1,091; annual risk, 0.52). We compared the area under the receiver operating characteristic curve (AUC) and net benefit (measure of clinical utility) among three risk stratification algorithms for predicting exacerbations in the next 12 months. We also evaluated the effect of model recalibration on clinical utility.RESULTS: Compared with exacerbation history, ACCEPT showed better performance in all three samples (change in AUC, 0.08, 0.07, and 0.10, in SUMMIT, LOTT, and TORCH, respectively; P # .001 for all). The Bertens model showed better performance compared with exacerbation history in SUMMIT and TORCH (change in AUC, 0.10 and 0.05, respectively; P < .001 for both), but not in LOTT. No algorithm was superior in clinical utility across all samples. Before recalibration, the Bertens model generally outperformed the other algorithms in low-risk settings, whereas ACCEPT outperformed others in high-risk settings. All three algo-rithms showed the risk of harm (providing lower net benefit than not using any risk stratification). After recalibration, risk of harm was mitigated substantially for both prediction models.INTERPRETATION: Exacerbation history alone is unlikely to provide clinical utility for pre-dicting COPD exacerbations in all settings and could be associated with a risk of harm. Prediction models have superior predictive performance, but require setting-specific recali-bration to confer higher clinical utility.
引用
收藏
页码:790 / 798
页数:9
相关论文
共 39 条
[1]   The Acute COPD Exacerbation Prediction Tool (ACCEPT): a modelling study [J].
Adibi, Amin ;
Sin, Don D. ;
Safari, Abdollah ;
Johnson, Kate M. ;
Aaron, Shawn D. ;
FitzGerald, J. Mark ;
Sadatsafavi, Mohsen .
LANCET RESPIRATORY MEDICINE, 2020, 8 (10) :1013-1021
[2]   A Randomized Trial of Long-Term Oxygen for COPD with Moderate Desaturation [J].
Albert, Richard K. ;
Au, David H. ;
Blackford, Amanda L. ;
Casaburi, Richard ;
Cooper, J. Allen, Jr. ;
Criner, Gerard J. ;
Diaz, Philip ;
Fuhlbrigge, Anne L. ;
Gay, Steven E. ;
Kanner, Richard E. ;
MacIntyre, Neil ;
Martinez, Fernando J. ;
Panos, Ralph J. ;
Piantadosi, Steven ;
Sciurba, Frank ;
Shade, David ;
Stibolt, Thomas ;
Stoller, James K. ;
Wise, Robert ;
Yusen, Roger D. ;
Tonascia, James ;
Sternberg, Alice L. ;
Bailey, William .
NEW ENGLAND JOURNAL OF MEDICINE, 2016, 375 (17) :1617-1627
[3]   Prognostic models for outcome prediction in patients with chronic obstructive pulmonary disease: systematic review and critical appraisal [J].
Bellou, Vanesa ;
Belbasis, Lazaros ;
Konstantinidis, Athanasios K. ;
Tzoulaki, Ioanna ;
Evangelou, Evangelos .
BMJ-BRITISH MEDICAL JOURNAL, 2019, 367
[4]   Development and validation of a model to predict the risk of exacerbations in chronic obstructive pulmonary disease [J].
Bertens, Loes C. M. ;
Reitsma, Johannes B. ;
Moons, Karel G. M. ;
van Mourik, Yvonne ;
Lammers, Jan Willem J. ;
Broekhuizen, Berna D. L. ;
Hoes, Arno W. ;
Rutten, Frans H. .
INTERNATIONAL JOURNAL OF CHRONIC OBSTRUCTIVE PULMONARY DISEASE, 2013, 8 :493-499
[5]   Canadian Thoracic Society Clinical Practice Guideline on pharmacotherapy in patients with COPD ? 2019 update of evidence [J].
Bourbeau, Jean ;
Bhutani, Mohit ;
Hernandez, Paul ;
Aaron, Shawn D. ;
Balter, Meyer ;
Beauchesne, Marie-France ;
D'Urzo, Anthony ;
Goldstein, Roger ;
Kaplan, Alan ;
Maltais, Francois ;
Sin, Don D. ;
Marciniuk, Darcy D. .
CANADIAN JOURNAL OF RESPIRATORY CRITICAL CARE AND SLEEP MEDICINE, 2019, 3 (04) :210-232
[6]  
Calverley P, 2004, EUR RESPIR J, V24, P206
[7]   International Differences in the Frequency of Chronic Obstructive Pulmonary Disease Exacerbations Reported in Three Clinical Trials [J].
Calverley, Peter M. A. ;
Martinez, Fernando J. ;
Vestbo, Jorgen ;
Jenkins, Christine R. ;
Wise, Robert ;
Lipson, David A. ;
Cowans, Nicholas J. ;
Yates, Julie ;
Crim, Courtney ;
Celli, Bartolome R. .
AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE, 2022, 206 (01) :25-33
[8]   Determinants of exacerbation risk in patients with COPD in the TIOSPIR study [J].
Calverley, Peter M. A. ;
Tetzlaff, Kay ;
Dusser, Daniel ;
Wise, Robert A. ;
Mueller, Achim ;
Metzdorf, Norbert ;
Anzueto, Antonio .
INTERNATIONAL JOURNAL OF CHRONIC OBSTRUCTIVE PULMONARY DISEASE, 2017, 12 :3391-3405
[9]   Non-parametric estimation for time-dependent AUC [J].
Chiang, Chin-Tsang ;
Hung, Hung .
JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2010, 140 (05) :1162-1174
[10]   COMPARING THE AREAS UNDER 2 OR MORE CORRELATED RECEIVER OPERATING CHARACTERISTIC CURVES - A NONPARAMETRIC APPROACH [J].
DELONG, ER ;
DELONG, DM ;
CLARKEPEARSON, DI .
BIOMETRICS, 1988, 44 (03) :837-845