共 50 条
Facile synthesis and characterization of multi-walled carbon nanotubes decorated with hydroxyapatite from cattle horns for adsorptive removal of fluoride
被引:8
作者:
Ojok, Walter
[1
,2
,6
]
Bolender, James P.
[3
]
Wasswa, John
[4
]
Ntambi, Emmanuel
[1
]
Wanasolo, William
[5
]
Moodley, Brenda
[6
]
机构:
[1] Mbarara Univ Sci & Technol, Fac Sci, Dept Chem, POB 1410, Mbarara, Uganda
[2] Muni Univ, Fac Sci, Dept Chem, POB 725, Arua, Uganda
[3] Univ San Diego, Dept Chem & Biochem, 5998 Alcala Pk, San Diego, CA 92110 USA
[4] Makerere Univ, Coll Nat Sci, Dept Chem, POB 7062, Kampala, Uganda
[5] Kyambogo Univ, Fac Sci, Dept Chem, POB 1 Kyambogo, Kampala, Uganda
[6] Univ KwaZulu Natal, Sch Chem & Phys, Westville Campus, ZA-4000 Durban, South Africa
来源:
关键词:
Cattle horn;
Fluoride adsorption;
Hydroxyapatite;
Kinetics;
Multi-walled carbon nanotubes;
Response surface methodology;
WATER;
EQUILIBRIUM;
ADSORBENT;
KINETICS;
BEHAVIOR;
D O I:
10.1016/j.heliyon.2023.e14341
中图分类号:
O [数理科学和化学];
P [天文学、地球科学];
Q [生物科学];
N [自然科学总论];
学科分类号:
07 ;
0710 ;
09 ;
摘要:
Developing a new adsorbent for fluoride removal from cattle horn waste materials by a facile chemical method has shown great potential for fluoride removal. This paper reports the synthesis of multi-walled carbon nanotubes decorated with hydroxyapatite from cattle horns (MWCNT-CH) using a facile chemical method. Characterization studies using standard techniques showed that the composite is mesoporous with a rough morphology and contained MWCNTs uniformly encapsulated by the hydroxyapatite forming a crystalline MWCNT-CH composite. Optimization of fluoride adsorption by the as-synthesized composite using Response Surface Methodology (RSM) showed that a maximum fluoride removal efficiency of 80.21% can be attained at initial fluoride concentration=10 mg/L, pH=5.25, adsorbent dose=0.5 g and a contact time of 78 min. ANOVA indicates contribution of the process variables in descending order as pH > contact time > adsorbent dose > initial fluoride concentration. Langmuir isotherm (R2=0.9991) best described the process, and the maximum adsorption capacity of fluoride onto the as-synthesized MWCNT-CH composite was 41.7 mg/g. Adsorption kinetics data were best fitted in the pseudo- second-order kinetic model (R2=0.9969), indicating chemisorption. The thermodynamic parameter (Delta H=13.95 J/mol and Delta S=65.76 J/mol/K) showed that fluoride adsorption onto the MWCNT-CH composite was a spontaneous, endothermic, and entropy-driving process. Moreover, the adsorption mechanism involves ion exchange, electrostatic interaction, and hydrogen bonding. Fluoride was successfully desorbed (using 0.1 M NaOH) from the composite in four cycles, retaining fluoride removal efficiency in the fourth cycle of 57.3%.
引用
收藏
页数:17
相关论文
共 50 条