The η-Anti-Hermitian Solution to a System of Constrained Matrix Equations over the Generalized Segre Quaternion Algebra

被引:15
|
作者
Ren, Bai-Ying [1 ]
Wang, Qing-Wen [1 ]
Chen, Xue-Ying [1 ]
机构
[1] Shanghai Univ, Dept Math, Shanghai 200444, Peoples R China
来源
SYMMETRY-BASEL | 2023年 / 15卷 / 03期
基金
中国国家自然科学基金;
关键词
generalized Segre quaternion algebra; eta-anti-Hermitian solution; real representation; COMMUTATIVE QUATERNIONS; TRANSFORM; SIGNAL;
D O I
10.3390/sym15030592
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this paper, we propose three real representations of a generalized Segre quaternion matrix. We establish necessary and sufficient conditions for the existence of the ?-anti-Hermitian solution to a system of constrained matrix equations over the generalized Segre quaternion algebra. We also obtain the expression of the general ?-anti-Hermitian solution to the system when it is solvable. Finally, we provide a numerical example to verify the main results of this paper.
引用
收藏
页数:15
相关论文
共 6 条
  • [1] The ?-(anti-)Hermitian solution to a constrained Sylvester-type generalized commutative quaternion matrix equation
    Chen, Xue-Ying
    Wang, Qing-Wen
    BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2023, 17 (03)
  • [2] The Hermitian Solution to a New System of Commutative Quaternion Matrix Equations
    Zhang, Yue
    Wang, Qing-Wen
    Xie, Lv-Ming
    SYMMETRY-BASEL, 2024, 16 (03):
  • [3] A Classical System of Matrix Equations Over the Split Quaternion Algebra
    Si, Kai-Wen
    Wang, Qing-Wen
    Xie, Lv-Ming
    ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2024, 34 (05)
  • [4] A system of matrix equations over the commutative quaternion ring
    Xie, Lv-Ming
    Wang, Qing-Wen
    FILOMAT, 2023, 37 (01) : 97 - 106
  • [5] A System of Tensor Equations over the Dual Split Quaternion Algebra with an Application
    Yang, Liuqing
    Wang, Qing-Wen
    Kou, Zuliang
    MATHEMATICS, 2024, 12 (22)
  • [6] The General Solution to a Classical Matrix Equation AXB = C over the Dual Split Quaternion Algebra
    Si, Kai-Wen
    Wang, Qing-Wen
    SYMMETRY-BASEL, 2024, 16 (04):