Efficient Multiparty Fully Homomorphic Encryption With Computation Fairness and Error Detection in Privacy Preserving Multisource Data Mining

被引:4
|
作者
Guo, Guanglai [1 ]
Zhu, Yan [1 ]
Chen, E. [1 ]
Yu, Ruyun [2 ]
Zhang, Lejun [3 ]
Lv, Kewei [4 ,5 ]
Feng, Rongquan [6 ]
机构
[1] Univ Sci & Technol Beijing, Sch Comp & Commun Engn, Beijing 100083, Peoples R China
[2] Cyberspace Secur Co Ltd, China Elect Technol Res Inst, Beijing 10085, Peoples R China
[3] Guangzhou Univ, Cyberspace Inst Adv Technol, Guangzhou 510006, Peoples R China
[4] Univ Chinese Acad Sci, Sch Cyber Secur, Beijing 100093, Peoples R China
[5] Chinese Acad Sci, Inst Informat Engn, Beijing 100193, Peoples R China
[6] Peking Univ, Sch Math Sci, Beijing 100871, Peoples R China
基金
中国国家自然科学基金;
关键词
Data privacy; Protocols; Reliability; Privacy; Homomorphic encryption; Distributed databases; Computational modeling; Error detection; homomorphic encryption (HE); multisource data mining; privacy preservation; reliability; secure multiparty computation; ASSOCIATION RULES;
D O I
10.1109/TR.2023.3246563
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
In this article, we address the problem of data privacy in multisource data mining. To do it, we present a new multiparty fully homomorphic encryption (MP-FHE) scheme, in which all participants are completely fair to perform the same computation. At first, the proposed MP-FHE scheme is divided into five stages (i.e., calculation, configuration, recombination, resharing, and reconstruction stage) to achieve the unified computation form of addition and multiplication. Meanwhile, random bivariate polynomials and commutative encryption are used to achieve the degree reduction of polynomials and the continuity of computation. Moreover, we prove that the scheme meets result consistency and program termination under the fail-stop adversary model. Especially, three kinds of error detection criteria are presented to find errors in three different stages (i.e., recombination, resharing, and reconstruction stage), which provides the monitor basis for the fail-stop adversary model. In addition, the MP-FHE scheme is applied into privacy preserving k-means clustering algorithm. Finally, we evaluate the computation and communication performance of our scheme from both theoretical and experimental aspects, and the evaluation results show that the scheme is efficient enough for multisource data mining.
引用
收藏
页码:1308 / 1323
页数:16
相关论文
共 50 条
  • [1] PriCollabAnalysis: privacy-preserving healthcare collaborative analysis on blockchain using homomorphic encryption and secure multiparty computation
    Tawfik, Ahmed M.
    Al-Ahwal, Ayman
    Eldien, Adly S. Tag
    Zayed, Hala H.
    CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS, 2025, 28 (03):
  • [2] A Fully Privacy-Preserving Solution for Anomaly Detection in IoT using Federated Learning and Homomorphic Encryption
    Arazzi, Marco
    Nicolazzo, Serena
    Nocera, Antonino
    INFORMATION SYSTEMS FRONTIERS, 2023, 27 (1) : 367 - 390
  • [3] Efficient Privacy-Preserving Matrix Factorization via Fully Homomorphic Encryption
    Kim, Sungwook
    Kim, Jinsu
    Koo, Dongyoung
    Kim, Yuna
    Yoon, Hyunsoo
    Shin, Junbum
    ASIA CCS'16: PROCEEDINGS OF THE 11TH ACM ASIA CONFERENCE ON COMPUTER AND COMMUNICATIONS SECURITY, 2016, : 617 - 628
  • [4] An Fifficient Method for Privacy Preserving Data Mining in Secure Multiparty Computation
    Pathak, Neha
    Pandey, Shweta
    2013 4TH NIRMA UNIVERSITY INTERNATIONAL CONFERENCE ON ENGINEERING (NUICONE 2013), 2013,
  • [5] Privacy preserving Intrusion Detection via Homomorphic Encryption
    Coppolino, Luigi
    D'Antonio, Salvatore
    Mazzeo, Giovanni
    Romano, Luigi
    Sgaglione, Luigi
    Cotroneo, Domenico
    Scognamiglio, Andrea
    2019 IEEE 28TH INTERNATIONAL CONFERENCE ON ENABLING TECHNOLOGIES: INFRASTRUCTURE FOR COLLABORATIVE ENTERPRISES (WETICE), 2019, : 321 - 326
  • [6] Using Homomorphic Encryption to Compute Privacy Preserving Data Mining in a Cloud Computing Environment
    Hammami, Hamza
    Brahmi, Hanen
    Brahmi, Imen
    Ben Yahia, Sadok
    INFORMATION SYSTEMS, EMCIS 2017, 2017, 299 : 397 - 413
  • [7] Hierarchical Homomorphic Encryption based Privacy Preserving Distributed Association Rule Mining
    Rana, Shubhra
    Thilagam, P. Santhi
    2014 INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY (ICIT), 2014, : 379 - 385
  • [8] Distributed Proxy Re-Encryption Protocol for Secure Multiparty Computation with Fully Homomorphic Encryption
    Demir, Busranur Bulbul
    Altilar, Deniz Turgay
    2024 IEEE INTERNATIONAL BLACK SEA CONFERENCE ON COMMUNICATIONS AND NETWORKING, BLACKSEACOM 2024, 2024, : 199 - 204
  • [9] Privacy-preserving approximate GWAS computation based on homomorphic encryption
    Duhyeong Kim
    Yongha Son
    Dongwoo Kim
    Andrey Kim
    Seungwan Hong
    Jung Hee Cheon
    BMC Medical Genomics, 13
  • [10] Privacy-Preserving Collaborative Filtering Using Fully Homomorphic Encryption
    Jumonji, Seiya
    Sakai, Kazuya
    Sun, Min-Te
    Ku, Wei-Shinn
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2023, 35 (03) : 2961 - 2974