Classification of Breast Lesions on DCE-MRI Data Using a Fine-Tuned MobileNet

被引:5
|
作者
Wang, Long [1 ]
Zhang, Ming [1 ]
He, Guangyuan [1 ]
Shen, Dong [1 ]
Meng, Mingzhu [1 ]
机构
[1] Nanjing Med Univ, Affiliated Changzhou Peoples Hosp 2, Dept Radiol, Changzhou 213164, Peoples R China
关键词
mobile convolutional neural networks; deep learning; breast lesions; magnetic resonance imaging; CANCER; DIAGNOSIS; MACHINE; MODEL;
D O I
10.3390/diagnostics13061067
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
It is crucial to diagnose breast cancer early and accurately to optimize treatment. Presently, most deep learning models used for breast cancer detection cannot be used on mobile phones or low-power devices. This study intended to evaluate the capabilities of MobileNetV1 and MobileNetV2 and their fine-tuned models to differentiate malignant lesions from benign lesions in breast dynamic contrast-enhanced magnetic resonance images (DCE-MRI).
引用
收藏
页数:13
相关论文
共 50 条
  • [41] Maximum slope using ultrafast breast DCE-MRI at 1.5 Tesla: a potential tool for predicting breast lesion aggressiveness
    Pelissier, Margaux
    Ambarki, Khalid
    Salleron, Julia
    Henrot, Philippe
    EUROPEAN RADIOLOGY, 2021, 31 (12) : 9556 - 9566
  • [42] Novel Morphological Features for Non-mass-like Breast Lesion Classification on DCE-MRI
    Razavi, Mohammad
    Wang, Lei
    Tan, Tao
    Karssemeijer, Nico
    Linsen, Lars
    Frese, Udo
    Hahn, Horst K.
    Zachmann, Gabriel
    MACHINE LEARNING IN MEDICAL IMAGING, MLMI 2016, 2016, 10019 : 305 - 312
  • [43] Melanoma identification and classification model based on fine-tuned convolutional neural network
    Almufareh, Maram F.
    Tariq, Noshina
    Humayun, Mamoona
    Khan, Farrukh Aslam
    DIGITAL HEALTH, 2024, 10
  • [44] A fine-tuned transformer model for brain tumor detection and classification
    B. Srinivas
    B. Anilkumar
    NLakshmi devi
    VBKL Aruna
    Multimedia Tools and Applications, 2025, 84 (15) : 15597 - 15621
  • [45] Classification of prostatic diseases by means of multivariate analysis on in vivo proton MRSI and DCE-MRI data
    Valerio, Mariacristina
    Panebianco, Valeria
    Sciarra, Alessandro
    Osimani, Marcello
    Salsiccia, Stefano
    Casciani, Lorena
    Giuliani, Alessandro
    Bizzarri, Mariano
    Di Silverio, Franco
    Passariello, Roberto
    Conti, Filippo
    NMR IN BIOMEDICINE, 2009, 22 (10) : 1036 - 1046
  • [46] Approach Based Lightweight Custom Convolutional Neural Network and Fine-Tuned MobileNet-V2 for ECG Arrhythmia Signals Classification
    Bechinia, Hadjer
    Benmerzoug, Djamel
    Khlifa, Nawres
    IEEE ACCESS, 2024, 12 (40827-40841): : 40827 - 40841
  • [47] Enhancement-constrained acceleration: A robust reconstruction framework in breast DCE-MRI
    Easley, Ty O.
    Ren, Zhen
    Kim, Byol
    Karczmar, Gregory S.
    Barber, Rina F.
    Pineda, Federico D.
    PLOS ONE, 2021, 16 (10):
  • [48] Automated Multiclass Classification of Groundnut Leaf Diseases Using Fine-Tuned InceptionV3 Model
    Kaur, Arshleen
    Sharma, Rishabh
    Chattopadhyay, Saumitra
    Verma, Aditya
    2024 2ND WORLD CONFERENCE ON COMMUNICATION & COMPUTING, WCONF 2024, 2024,
  • [49] Radiomics model to classify mammary masses using breast DCE-MRI compared to the BI-RADS classification performance
    Debbi, Kawtar
    Habert, Paul
    Grob, Anais
    Loundou, Anderson
    Siles, Pascale
    Bartoli, Axel
    Jacquier, Alexis
    INSIGHTS INTO IMAGING, 2023, 14 (01)
  • [50] Radiomics model to classify mammary masses using breast DCE-MRI compared to the BI-RADS classification performance
    Kawtar Debbi
    Paul Habert
    Anaïs Grob
    Anderson Loundou
    Pascale Siles
    Axel Bartoli
    Alexis Jacquier
    Insights into Imaging, 14