Classification of Breast Lesions on DCE-MRI Data Using a Fine-Tuned MobileNet

被引:5
|
作者
Wang, Long [1 ]
Zhang, Ming [1 ]
He, Guangyuan [1 ]
Shen, Dong [1 ]
Meng, Mingzhu [1 ]
机构
[1] Nanjing Med Univ, Affiliated Changzhou Peoples Hosp 2, Dept Radiol, Changzhou 213164, Peoples R China
关键词
mobile convolutional neural networks; deep learning; breast lesions; magnetic resonance imaging; CANCER; DIAGNOSIS; MACHINE; MODEL;
D O I
10.3390/diagnostics13061067
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
It is crucial to diagnose breast cancer early and accurately to optimize treatment. Presently, most deep learning models used for breast cancer detection cannot be used on mobile phones or low-power devices. This study intended to evaluate the capabilities of MobileNetV1 and MobileNetV2 and their fine-tuned models to differentiate malignant lesions from benign lesions in breast dynamic contrast-enhanced magnetic resonance images (DCE-MRI).
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Textural analysis of early-phase spatiotemporal changes in contrast enhancement of breast lesions imaged with an ultrafast DCE-MRI protocol
    Milenkovic, Jana
    Dalmis, Mehmet Ufuk
    Zgajnar, Janez
    Platel, Bram
    MEDICAL PHYSICS, 2017, 44 (09) : 4652 - 4664
  • [32] Multiclass Skin Cancer Classification Using Ensemble of Fine-Tuned Deep Learning Models
    Kausar, Nabeela
    Hameed, Abdul
    Sattar, Mohsin
    Ashraf, Ramiza
    Imran, Ali Shariq
    ul Abidin, Muhammad Zain
    Ali, Ammara
    APPLIED SCIENCES-BASEL, 2021, 11 (22):
  • [33] Automated Breast Tumor Segmentation in DCE-MRI Using Deep Learning
    Benjelloun, Mohammed
    El Adoui, Mohammed
    Larhmam, Mohamed Amine
    Mahmoudi, Sidi Ahmed
    2018 4TH INTERNATIONAL CONFERENCE ON CLOUD COMPUTING TECHNOLOGIES AND APPLICATIONS (CLOUDTECH), 2018,
  • [34] PoxNet22: A Fine-Tuned Model for the Classification of Monkeypox Disease Using Transfer Learning
    Yasmin, Farhana
    Hassan, Md. Mehedi
    Hasan, Mahade
    Zaman, Sadika
    Kaushal, Chetna
    El-Shafai, Walid
    Soliman, Naglaa F.
    IEEE ACCESS, 2023, 11 : 24053 - 24076
  • [35] Added value of DCE-MRI in the management of cystic-cavitary lung lesions
    Karaman, Adem
    Araz, Omer
    Durur-Subasi, Irmak
    Alper, Fatih
    Subasi, Mahmut
    Karakaya, Afak D.
    Akgun, Metin
    RESPIROLOGY, 2016, 21 (04) : 739 - 745
  • [36] Breast MR with special focus on DW-MRI and DCE-MRI
    Petralia, G.
    Bonello, L.
    Priolo, F.
    Summers, P.
    Bellomi, M.
    CANCER IMAGING, 2011, 11 (01): : 76 - 90
  • [37] Tissue and Tumor Epithelium Classification using Fine-tuned Deep CNN Models
    Anju, T. E.
    Vimala, S.
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2022, 13 (09) : 306 - 314
  • [38] Automated breast tumor ultrasound image segmentation with hybrid UNet and classification using fine-tuned CNN model
    Hossain, Shahed
    Azam, Sami
    Montaha, Sidratul
    Karim, Asif
    Chowa, Sadia Sultana
    Mondol, Chaity
    Hasan, Md Zahid
    Jonkman, Mirjam
    HELIYON, 2023, 9 (11)
  • [39] Evaluating Impacts of Motion Correction on Deep Learning Approaches for Breast DCE-MRI Segmentation and Classification
    Galli, Antonio
    Gravina, Michela
    Marrone, Stefano
    Piantadosi, Gabriele
    Sansone, Mario
    Sansone, Carlo
    COMPUTER ANALYSIS OF IMAGES AND PATTERNS, CAIP 2019, PT II, 2019, 11679 : 294 - 304
  • [40] The additional utility of ultrafast MRI on conventional DCE-MRI in evaluating preoperative MRI of breast cancer patients
    Lee, Soo Jeong
    Ko, Kyung Hee
    Jung, Hae Kyoung
    Koh, Ji Eun
    Park, Ah Young
    EUROPEAN JOURNAL OF RADIOLOGY, 2020, 124