Classification of Breast Lesions on DCE-MRI Data Using a Fine-Tuned MobileNet

被引:5
|
作者
Wang, Long [1 ]
Zhang, Ming [1 ]
He, Guangyuan [1 ]
Shen, Dong [1 ]
Meng, Mingzhu [1 ]
机构
[1] Nanjing Med Univ, Affiliated Changzhou Peoples Hosp 2, Dept Radiol, Changzhou 213164, Peoples R China
关键词
mobile convolutional neural networks; deep learning; breast lesions; magnetic resonance imaging; CANCER; DIAGNOSIS; MACHINE; MODEL;
D O I
10.3390/diagnostics13061067
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
It is crucial to diagnose breast cancer early and accurately to optimize treatment. Presently, most deep learning models used for breast cancer detection cannot be used on mobile phones or low-power devices. This study intended to evaluate the capabilities of MobileNetV1 and MobileNetV2 and their fine-tuned models to differentiate malignant lesions from benign lesions in breast dynamic contrast-enhanced magnetic resonance images (DCE-MRI).
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Predicting malignancy in breast lesions: enhancing accuracy with fine-tuned convolutional neural network models
    Li, Li
    Pan, Changjie
    Zhang, Ming
    Shen, Dong
    He, Guangyuan
    Meng, Mingzhu
    BMC MEDICAL IMAGING, 2024, 24 (01):
  • [22] Sureness of classification of breast cancers as pure DCIS or with invasive components on DCE-MRI
    Whitney, Heather M.
    Drukker, Karen
    Giger, Maryellen L.
    17TH INTERNATIONAL WORKSHOP ON BREAST IMAGING, IWBI 2024, 2024, 13174
  • [23] Pattern Recognition Approaches for Breast Cancer DCE-MRI Classification: A Systematic Review
    Fusco, Roberta
    Sansone, Mario
    Filice, Salvatore
    Carone, Guglielmo
    Amato, Daniela Maria
    Sansone, Carlo
    Petrillo, Antonella
    JOURNAL OF MEDICAL AND BIOLOGICAL ENGINEERING, 2016, 36 (04) : 449 - 459
  • [24] Automated localization of breast cancer in DCE-MRI
    Gubern-Merida, Albert
    Marti, Robert
    Melendez, Jaime
    Hauth, Jakob L.
    Mann, Ritse M.
    Karssemeijer, Nico
    Platel, Bram
    MEDICAL IMAGE ANALYSIS, 2015, 20 (01) : 265 - 274
  • [25] Computerized breast parenchymal analysis on DCE-MRI
    Li, Hui
    Giger, Maryellen L.
    Yuan, Yading
    Jansen, Sanaz A.
    Lan, Li
    Bhooshan, Neha
    Newstead, Gillian M.
    MEDICAL IMAGING 2009: COMPUTER-AIDED DIAGNOSIS, 2009, 7260
  • [26] Transfer-GAN: data augmentation using a fine-tuned GAN for sperm morphology classification
    Abbasi, Amir
    Bahrami, Sepideh
    Hemmati, Tahere
    Mirroshandel, Seyed Abolghasem
    COMPUTER METHODS IN BIOMECHANICS AND BIOMEDICAL ENGINEERING-IMAGING AND VISUALIZATION, 2023, 11 (06) : 2440 - 2456
  • [27] Fusing fine-tuned deep features for skin lesion classification
    Mahbod, Amirreza
    Schaefer, Gerald
    Effinger, Isabella
    Ecker, Rupert
    Pitiot, Alain
    Wang, Chunliang
    COMPUTERIZED MEDICAL IMAGING AND GRAPHICS, 2019, 71 : 19 - 29
  • [28] Evaluation of orbital lesions with DCE-MRI: a literature review
    Ang, Terence
    Juniat, Valerie
    Patel, Sandy
    Selva, Dinesh
    ORBIT-THE INTERNATIONAL JOURNAL ON ORBITAL DISORDERS-OCULOPLASTIC AND LACRIMAL SURGERY, 2024, 43 (03): : 408 - 416
  • [29] Dermoscopic Image Classification Method Using an Ensemble of Fine-Tuned Convolutional Neural Networks
    Shen, Xin
    Wei, Lisheng
    Tang, Shaoyu
    SENSORS, 2022, 22 (11)
  • [30] Artificial Intelligence-Based Classification of Breast Lesions Imaged With a Multiparametric Breast MRI Protocol With Ultrafast DCE-MRI, T2, and DWI
    Dalmis, Mehmet U.
    Gubern-Merida, Albert
    Vreemann, Suzan
    Bult, Peter
    Karssemeijer, Nico
    Mann, Ritse
    Teuwen, Jonas
    INVESTIGATIVE RADIOLOGY, 2019, 54 (06) : 325 - 332