Classification of Breast Lesions on DCE-MRI Data Using a Fine-Tuned MobileNet

被引:5
|
作者
Wang, Long [1 ]
Zhang, Ming [1 ]
He, Guangyuan [1 ]
Shen, Dong [1 ]
Meng, Mingzhu [1 ]
机构
[1] Nanjing Med Univ, Affiliated Changzhou Peoples Hosp 2, Dept Radiol, Changzhou 213164, Peoples R China
关键词
mobile convolutional neural networks; deep learning; breast lesions; magnetic resonance imaging; CANCER; DIAGNOSIS; MACHINE; MODEL;
D O I
10.3390/diagnostics13061067
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
It is crucial to diagnose breast cancer early and accurately to optimize treatment. Presently, most deep learning models used for breast cancer detection cannot be used on mobile phones or low-power devices. This study intended to evaluate the capabilities of MobileNetV1 and MobileNetV2 and their fine-tuned models to differentiate malignant lesions from benign lesions in breast dynamic contrast-enhanced magnetic resonance images (DCE-MRI).
引用
收藏
页数:13
相关论文
共 50 条
  • [1] A Multiple Classifier System for Classification of Breast Lesions Using Dynamic and Morphological Features in DCE-MRI
    Fusco, Roberta
    Sansone, Mario
    Petrillo, Antonella
    Sansone, Carlo
    STRUCTURAL, SYNTACTIC, AND STATISTICAL PATTERN RECOGNITION, 2012, 7626 : 684 - 692
  • [2] An Investigation of Deep Learning for Lesions Malignancy Classification in Breast DCE-MRI
    Marrone, Stefano
    Piantadosi, Gabriele
    Fusco, Roberta
    Petrillo, Antonella
    Sansone, Mario
    Sansone, Carlo
    IMAGE ANALYSIS AND PROCESSING (ICIAP 2017), PT II, 2017, 10485 : 479 - 489
  • [3] Molecular subtypes classification of breast cancer in DCE-MRI using deep features
    Hasan, Ali M.
    Al-Waely, Noor K. N.
    Aljobouri, Hadeel K.
    Jalab, Hamid A.
    Ibrahim, Rabha W.
    Meziane, Farid
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 236
  • [4] Assessment of Texture Analysis on DCE-MRI data for the Differentiation of Breast Tumor Lesions
    Loose, Jennifer
    Harz, Markus T.
    Laue, Hendrik
    Twellmann, Thorsten
    Bick, Ulrich
    Rominger, Marga
    Hahn, Horst K.
    Peitgen, Heinz-Otto
    MEDICAL IMAGING 2009: COMPUTER-AIDED DIAGNOSIS, 2009, 7260
  • [5] SEGMENTATION AND CLASSIFICATION OF TRIPLE NEGATIVE BREAST CANCERS USING DCE-MRI
    Agner, Shannon C.
    Xu, Jun
    Fatakdawala, Hussain
    Ganesan, Shridar
    Madabhushi, Anant
    Englander, Sarah
    Rosen, Mark
    Thomas, Kathleen
    Schnall, Mitehell
    Feldman, Miehael
    Tomaszewski, John
    2009 IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING: FROM NANO TO MACRO, VOLS 1 AND 2, 2009, : 1227 - +
  • [6] Exploring Kinetic Curves Features for the Classification of Benign and Malignant Breast Lesions in DCE-MRI
    Li, Zixian
    Zhong, Yuming
    Wang, Yi
    2024 IEEE 37TH INTERNATIONAL SYMPOSIUM ON COMPUTER-BASED MEDICAL SYSTEMS, CBMS 2024, 2024, : 496 - 501
  • [7] Breast Cancer Histological Image Classification Using Fine-Tuned Deep Network Fusion
    Mahbod, Amirreza
    Ellinger, Isabella
    Ecker, Rupert
    Smedby, Orjan
    Wang, Chunliang
    IMAGE ANALYSIS AND RECOGNITION (ICIAR 2018), 2018, 10882 : 754 - 762
  • [8] BreastDM: A DCE-MRI dataset for breast tumor image segmentation and classification
    Zhao, Xiaoming
    Liao, Yuehui
    Xie, Jiahao
    He, Xiaxia
    Zhang, Shiqing
    Wang, Guoyu
    Fang, Jiangxiong
    Lu, Hongsheng
    Yu, Jun
    COMPUTERS IN BIOLOGY AND MEDICINE, 2023, 164
  • [9] LBP-TOP for Volume Lesion Classification in Breast DCE-MRI
    Piantadosi, Gabriele
    Fusco, Roberta
    Petrillo, Antonella
    Sansone, Mario
    Sansone, Carlo
    IMAGE ANALYSIS AND PROCESSING - ICIAP 2015, PT I, 2015, 9279 : 647 - 657
  • [10] Automated classification of brain MRI reports using fine-tuned large language models
    Kanzawa, Jun
    Yasaka, Koichiro
    Fujita, Nana
    Fujiwara, Shin
    Abe, Osamu
    NEURORADIOLOGY, 2024, 66 (12) : 2177 - 2183