Bamboo shoot dietary fiber alleviates gut microbiota dysbiosis and modulates liver fatty acid metabolism in mice with high-fat diet-induced obesity

被引:12
|
作者
Zhou, Xiaolu [1 ]
Ma, Lingjun [1 ]
Dong, Li [1 ]
Li, Daotong [1 ]
Chen, Fang [1 ]
Hu, Xiaosong [1 ]
机构
[1] China Agr Univ, Coll Food Sci & Nutr Engn, Natl Engn Res Ctr Fruits & Vegetables Proc, Engn Res Ctr Fruits & Vegetables Proc,Key Lab Frui, Beijing, Peoples R China
来源
FRONTIERS IN NUTRITION | 2023年 / 10卷
关键词
bamboo shoot dietary fiber; obesity; insulin resistance; gut microbiota; metabolites; antibiotic-treated mice; FECES; RAT;
D O I
10.3389/fnut.2023.1161698
中图分类号
R15 [营养卫生、食品卫生]; TS201 [基础科学];
学科分类号
100403 ;
摘要
IntroductionObesity is a common nutritional disorder characterized by an excessive fat accumulation. In view of the critical role of gut microbiota in the development of obesity and metabolic diseases, novel dietary therapies have been developed to manage obesity by targeting the gut microbiome. In this study, we investigated anti-obesity effects of bamboo shoot dietary fiber (BSDF) and the potential mechanisms. MethodsAfter 12 weeks of intervention with BSDF in high-fat mice, we detected obesity-related phenotypic indicators, and made transcriptomic analysis of liver tissue. Then we analyzed the changes of gut microbiota using 16S rRNA gene sequencing, explored the effect of BSDF on gut microbiota metabolites, and finally verified the importance of gut microbiota through antibiotic animal model. Results and discussionWe found that BSDF was effective in reducing lipid accumulation in liver and adipose tissue and alleviating dyslipidemia and insulin resistance. Liver transcriptome analysis results showed that BSDF could improve lipid metabolism and liver injury by modulating peroxisome proliferator-activated receptor (PPAR) and fatty acid metabolic pathways. The 16S rRNA gene sequencing analysis of gut microbiota composition showed that BSDF significantly enriched beneficial bacteria such as Bifidobacterium, Akkermansia, Dubosiella, and Alloprevotella. Analysis of fecal metabolomics and gut microbiota metabolites revealed that BSDF increased the levels of several short-chain fatty acids and enriched bile acids, which may be important for improving lipid metabolism. Notably, the obesity-related metabolic disorders were abrogated after the abrogation of gut microbiota, suggesting that gut microbiota is a key factor in the beneficial effects of BSDF. ConclusionOur study suggests that BSDF as a prebiotic supplement has the potential to improve obesity by improving gut microbiota and modulating host PPAR and fatty acid metabolic pathways.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Fucoidan alleviates dyslipidemia and modulates gut microbiota in high-fat diet-induced mice
    Liu, Min
    Ma, Lin
    Chen, Qichao
    Zhang, Pengyu
    Chen, Chao
    Jia, Lilin
    Li, Huajun
    JOURNAL OF FUNCTIONAL FOODS, 2018, 48 : 220 - 227
  • [2] Asparagus cochinchinensis alleviates disturbances of lipid metabolism and gut microbiota in high-fat diet-induced obesity mice
    Luo, Shiyue
    Zhou, Lixiao
    Jiang, Xuejun
    Xia, Yinyin
    Huang, Lishuang
    Ling, Run
    Tang, Shixin
    Zou, Zhen
    Chen, Chengzhi
    Qiu, Jingfu
    FRONTIERS IN PHARMACOLOGY, 2022, 13
  • [3] Adzuki Bean Alleviates Obesity and Insulin Resistance Induced by a High-Fat Diet and Modulates Gut Microbiota in Mice
    Zhao, Qingyu
    Hou, Dianzhi
    Fu, Yongxia
    Xue, Yong
    Guan, Xiao
    Shen, Qun
    NUTRIENTS, 2021, 13 (09)
  • [4] Semaglutide alleviates gut microbiota dysbiosis induced by a high-fat diet
    Duan, Xinhao
    Zhang, Lei
    Liao, Yi
    Lin, Zijing
    Guo, Changxin
    Luo, Sen
    Wang, Fu
    Zou, Zhen
    Zeng, Zhijun
    Chen, Chengzhi
    Qiu, Jingfu
    EUROPEAN JOURNAL OF PHARMACOLOGY, 2024, 969
  • [5] Curcumin alleviates high-fat diet-induced hepatic steatosis and obesity in association with modulation of gut microbiota in mice
    Li, Shuo
    You, Jinming
    Wang, Zirui
    Liu, Yue
    Wang, Bo
    Du, Min
    Zou, Tiande
    FOOD RESEARCH INTERNATIONAL, 2021, 143
  • [6] Supplementation with Sodium Butyrate Modulates the Composition of the Gut Microbiota and Ameliorates High-Fat Diet-Induced Obesity in Mice
    Fang, Wanjun
    Xue, Hongliang
    Chen, Xu
    Chen, Ke
    Ling, Wenhua
    JOURNAL OF NUTRITION, 2019, 149 (05): : 747 - 754
  • [7] Codium fragileAmeliorates High-Fat Diet-Induced Metabolism by Modulating the Gut Microbiota in Mice
    Kim, Jungman
    Choi, Jae Ho
    Oh, Taehwan
    Ahn, Byungjae
    Unno, Tatsuya
    NUTRIENTS, 2020, 12 (06) : 1 - 15
  • [8] Poly-γ-D-glutamic acid ameliorates obesity by modulating gut microbiota dysbiosis in high-fat diet-induced obesity mice
    Oh, Dong Nyoung
    Park, So Young
    Jang, Won Je
    Lee, Jong Min
    JOURNAL OF FUNCTIONAL FOODS, 2025, 127
  • [9] Salidroside protects mice from high-fat diet-induced obesity by modulating the gut microbiota
    Liu, Jiuxi
    Cai, Jiapei
    Zhang, Naisheng
    Tai, Jiandong
    Fan, Peng
    Dong, Xue
    Cao, Yongguo
    INTERNATIONAL IMMUNOPHARMACOLOGY, 2023, 120
  • [10] Dietary chlorogenic acid alleviates high-fat diet-induced steatotic liver disease by regulating metabolites and gut microbiota
    Yu, Yujuan
    Zeng, Fumao
    Han, Peiheng
    Zhang, Li
    Yang, Ling
    Zhou, Feng
    Liu, Qing
    Ruan, Zheng
    INTERNATIONAL JOURNAL OF FOOD SCIENCES AND NUTRITION, 2024, 75 (04) : 369 - 384