Rank-Adaptive Tensor Completion Based on Tucker Decomposition

被引:2
作者
Liu, Siqi [1 ]
Shi, Xiaoyu [1 ]
Liao, Qifeng [1 ]
机构
[1] ShanghaiTech Univ, Sch Informat Sci & Technol, Shanghai 201210, Peoples R China
基金
上海市自然科学基金; 中国国家自然科学基金;
关键词
tensor completion; Tucker decomposition; HOOI algorithm; rank-adaptive methods; SVT algorithm; IMAGE;
D O I
10.3390/e25020225
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Tensor completion is a fundamental tool to estimate unknown information from observed data, which is widely used in many areas, including image and video recovery, traffic data completion and the multi-input multi-output problems in information theory. Based on Tucker decomposition, this paper proposes a new algorithm to complete tensors with missing data. In decomposition-based tensor completion methods, underestimation or overestimation of tensor ranks can lead to inaccurate results. To tackle this problem, we design an alternative iterating method that breaks the original problem into several matrix completion subproblems and adaptively adjusts the multilinear rank of the model during optimization procedures. Through numerical experiments on synthetic data and authentic images, we show that the proposed method can effectively estimate the tensor ranks and predict the missing entries.
引用
收藏
页数:16
相关论文
共 29 条
  • [1] Scalable tensor factorizations for incomplete data
    Acar, Evrim
    Dunlavy, Daniel M.
    Kolda, Tamara G.
    Morup, Morten
    [J]. CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2011, 106 (01) : 41 - 56
  • [2] Ahmadi-Asl S, 2022, Arxiv, DOI arXiv:2207.06072
  • [3] [Anonymous], 1958, STUD LINEAR NONLINEA
  • [4] Tensor-Based Channel Estimation for Massive MIMO-OFDM Systems
    Araujo, Daniel Costa
    De Almeida, Andre L. F.
    Da Costa, Joao P. C. L.
    De Sousa Jr, Rafael T.
    [J]. IEEE ACCESS, 2019, 7 : 42133 - 42147
  • [5] Efficient Tensor Completion for Color Image and Video Recovery: Low-Rank Tensor Train
    Bengua, Johann A.
    Phien, Ho N.
    Hoang Duong Tuan
    Do, Minh N.
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2017, 26 (05) : 2466 - 2479
  • [6] A SINGULAR VALUE THRESHOLDING ALGORITHM FOR MATRIX COMPLETION
    Cai, Jian-Feng
    Candes, Emmanuel J.
    Shen, Zuowei
    [J]. SIAM JOURNAL ON OPTIMIZATION, 2010, 20 (04) : 1956 - 1982
  • [7] On the best rank-1 and rank-(R1,R2,...,RN) approximation of higher-order tensors
    De Lathauwer, L
    De Moor, B
    Vandewalle, J
    [J]. SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2000, 21 (04) : 1324 - 1342
  • [8] Low-Rank Tensor Completion Using Matrix Factorization Based on Tensor Train Rank and Total Variation
    Ding, Meng
    Huang, Ting-Zhu
    Ji, Teng-Yu
    Zhao, Xi-Le
    Yang, Jing-Hua
    [J]. JOURNAL OF SCIENTIFIC COMPUTING, 2019, 81 (02) : 941 - 964
  • [9] Tensor completion and low-n-rank tensor recovery via convex optimization
    Gandy, Silvia
    Recht, Benjamin
    Yamada, Isao
    [J]. INVERSE PROBLEMS, 2011, 27 (02)
  • [10] Geng X., 2009, P 17 ACM INT C MULTI