Evaluation of Surface Layer Stability Functions and Their Extension to First Order Turbulent Closures for Weakly and Strongly Stratified Stable Boundary Layer

被引:8
作者
Debolskiy, Andrey V. [1 ,2 ,3 ]
Mortikov, Evgeny V. [1 ,2 ,4 ]
Glazunov, Andrey V. [1 ,2 ,4 ]
Luepkes, Christof [5 ]
机构
[1] Lomonosov Moscow State Univ, Moscow, Russia
[2] Moscow Ctr Fundamental & Appl Math, Moscow, Russia
[3] RAS, AM Obukhov Inst Atmospher Phys, Moscow, Russia
[4] RAS, Marchuk Inst Numer Math, Moscow, Russia
[5] Alfred Wegener Inst, Helmholtz Zentrum Polar & Meeresforsch, Bremerhaven, Germany
基金
俄罗斯科学基金会;
关键词
Large-eddy simulation; Monin-Obukhov similarity theory; Stable boundary layer; Turbulence closures; FLUX-PROFILE RELATIONSHIPS; LARGE-EDDY SIMULATIONS; DOME C; TEMPERATURE; MODEL; ENERGY; PARAMETERIZATION; VELOCITY; SCALES; FLOWS;
D O I
10.1007/s10546-023-00784-3
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
In this study, we utilize a generalization of Monin-Obukhov similarity theory to construct first order turbulent closures for single-column models of the atmospheric boundary layer (ABL). A set of widely used universal functions for dimensionless gradients is evaluated. Two test cases based on Large-Eddy Simulations (LES) experimental setups are considered - weakly stable ABL (GABLS1; Beare et al. in Bound Layer Meteorol 118(2):247-272, 2006), and very strongly stratified ABL (van der Linden et al. in Bound Layer Meteorol 173(2):165-192, 2019). The comparison shows that approximations obtained using a linear dimensionless velocity gradient tend to match the LES data more closely. In particular, the EFB (Energy- and Flux- Budget) closure proposed by Zilitinkevich et al. (Bound Layer Meteorol 146(3):341-373, 2013) has the best performance for the tests considered here. We also test surface layer "bulk formulas" based on these universal functions. The same LES data are utilized for comparison. The setup showcases the behavior of surface scheme, when one assumes that the velocity and temperature profiles in ABL are represented correctly. The advantages and disadvantages of different surface schemes are revealed.
引用
收藏
页码:73 / 93
页数:21
相关论文
共 52 条
[11]  
2
[12]   Stable boundary-layer modelling: Established approaches and beyond [J].
Derbyshire, SH .
BOUNDARY-LAYER METEOROLOGY, 1999, 90 (03) :423-446
[13]   Climate change projections using the IPSL-CM5 Earth System Model: from CMIP3 to CMIP5 [J].
Dufresne, J-L. ;
Foujols, M-A. ;
Denvil, S. ;
Caubel, A. ;
Marti, O. ;
Aumont, O. ;
Balkanski, Y. ;
Bekki, S. ;
Bellenger, H. ;
Benshila, R. ;
Bony, S. ;
Bopp, L. ;
Braconnot, P. ;
Brockmann, P. ;
Cadule, P. ;
Cheruy, F. ;
Codron, F. ;
Cozic, A. ;
Cugnet, D. ;
de Noblet, N. ;
Duvel, J-P. ;
Ethe, C. ;
Fairhead, L. ;
Fichefet, T. ;
Flavoni, S. ;
Friedlingstein, P. ;
Grandpeix, J-Y. ;
Guez, L. ;
Guilyardi, E. ;
Hauglustaine, D. ;
Hourdin, F. ;
Idelkadi, A. ;
Ghattas, J. ;
Joussaume, S. ;
Kageyama, M. ;
Krinner, G. ;
Labetoulle, S. ;
Lahellec, A. ;
Lefebvre, M-P. ;
Lefevre, F. ;
Levy, C. ;
Li, Z. X. ;
Lloyd, J. ;
Lott, F. ;
Madec, G. ;
Mancip, M. ;
Marchand, M. ;
Masson, S. ;
Meurdesoif, Y. ;
Mignot, J. .
CLIMATE DYNAMICS, 2013, 40 (9-10) :2123-2165
[14]  
Dyer A. J., 1974, Boundary-Layer Meteorology, V7, P363, DOI 10.1007/BF00240838
[15]   Current issues in wind energy meteorology [J].
Emeis, Stefan .
METEOROLOGICAL APPLICATIONS, 2014, 21 (04) :803-819
[16]  
Esau IN., 2008, I COMPUT TECHNOL SB, V13, P90
[17]   Commentaries on Top-Cited Boundary-Layer Meteorology Articles [J].
Garratt, John ;
Wilczak, James ;
Holtslag, Albert ;
Schmid, Hans Peter ;
Grachev, Andrey ;
Beljaars, Anton ;
Foken, Thomas ;
Chen, Fei ;
Fairall, Christopher ;
Hicks, Bruce ;
Kusaka, Hiroyuki ;
Martilli, Alberto ;
Masson, Valery ;
Mauder, Matthias ;
Oncley, Steven ;
Rotach, Mathias ;
Tjernstrom, Michael .
BOUNDARY-LAYER METEOROLOGY, 2020, 177 (2-3) :169-188
[18]   Two years of atmospheric boundary layer observations on a 45-m tower at Dome C on the Antarctic plateau [J].
Genthon, Christophe ;
Six, Delphine ;
Gallee, Hubert ;
Grigioni, Paolo ;
Pellegrini, Andrea .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2013, 118 (08) :3218-3232
[19]   Layered Structure of Stably Stratified Turbulent Shear Flows [J].
Glazunov, A. V. ;
Mortikov, E. V. ;
Barskov, K. V. ;
Kadantsev, E. V. ;
Zilitinkevich, S. S. .
IZVESTIYA ATMOSPHERIC AND OCEANIC PHYSICS, 2019, 55 (04) :312-323
[20]   Numerical simulation of stably stratified turbulent flows over an urban surface: Spectra and scales and parameterization of temperature and wind-velocity profiles [J].
Glazunov, A. V. .
IZVESTIYA ATMOSPHERIC AND OCEANIC PHYSICS, 2014, 50 (04) :356-368