Ziv-Zakai Bound for DOAs Estimation

被引:54
作者
Zhang, Zongyu [1 ,2 ]
Shi, Zhiguo [1 ,3 ]
Gu, Yujie [4 ]
机构
[1] Zhejiang Univ, Coll Informat Sci & Elect Engn, Hangzhou 310027, Peoples R China
[2] Univ Pisa, Dept Informat Engn, I-56122 Pisa, PI, Italy
[3] Key Lab Collaborat Sensing & Autonomous Unmanned S, Hangzhou 310027, Peoples R China
[4] Aptiv, Adv Safety & User Experience, Agoura Hills, CA 91301 USA
基金
中国国家自然科学基金;
关键词
Estimation; Direction-of-arrival estimation; Sensor arrays; Bayes methods; Signal to noise ratio; Sensors; Mean square error methods; Coherence; Cramer-Rao bound; directions-of-arrival estimation; mean square error; order statistics; permutation ambiguity; Ziv-Zakai bound; OF-ARRIVAL ESTIMATION; COPRIME ARRAY; ESTIMATION ERROR; PARAMETER; PERFORMANCE; ESPRIT;
D O I
10.1109/TSP.2022.3229946
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Lower bounds on the mean square error (MSE) play an important role in evaluating the direction-of-arrival (DOA) estimation performance. Among numerous bounds for DOA estimation, the local Cramer-Rao bound (CRB) is only tight asymptotically. By contrast, the existing global tight Ziv-Zakai bound (ZZB) is appropriate for evaluating the single source estimation only. In this paper, we derive an explicit ZZB applicable for evaluating hybrid coherent/incoherent multiple sources DOA estimation. It is first shown that, a straightforward generalization of ZZB from single source estimation to multiple sources estimation cannot keep the bound valid in the a priori performance region. To derive a global tight ZZB, we then introduce order statistics to describe the change of the a priori distribution of DOAs caused by ordering process during the MSE calculation. The derived ZZB is for the first time formulated as a function of coherent coefficients between coherent sources, and reveals the relationship between the MSE convergency in the a priori performance region and the number of sources. Moreover, the derived ZZB also provides a unified tight bound for both overdetermined and underdetermined DOA estimation. Simulation results demonstrate the obvious advantages of the derived ZZB over the CRB on evaluating and predicting the estimation performance for multiple sources DOA.
引用
收藏
页码:136 / 149
页数:14
相关论文
共 46 条
  • [1] A Machine Learning Approach to DoA Estimation and Model Order Selection for Antenna Arrays With Subarray Sampling
    Barthelme, Andreas
    Utschick, Wolfgang
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2021, 69 : 3075 - 3087
  • [2] Extended Ziv-Zakai lower bound for vector parameter estimation
    Bell, KL
    Steinberg, Y
    Ephraim, Y
    VanTrees, HL
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 1997, 43 (02) : 624 - 637
  • [3] Explicit Ziv-Zakai lower bound for bearing estimation
    Bell, KL
    Ephraim, Y
    VanTrees, HL
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1996, 44 (11) : 2810 - 2824
  • [4] LOWER BOUND ON ESTIMATION ERROR FOR CERTAIN DIFFUSION PROCESSES
    BOBROVSKY, BZ
    ZAKAI, M
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 1976, 22 (01) : 45 - 52
  • [5] Casella G., 2002, Statistical Inference, V2nd
  • [6] IMPROVED LOWER BOUNDS ON SIGNAL PARAMETER ESTIMATION
    CHAZAN, D
    ZAKAI, M
    ZIV, J
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 1975, 21 (01) : 90 - 93
  • [7] ESPRIT-Like Two-Dimensional DOA Estimation for Coherent Signals
    Chen, Fang-Jiong
    Kwong, Sam
    Kok, Chi-Wah
    [J]. IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2010, 46 (03) : 1477 - +
  • [8] Ziv-Zakai Bound for Joint Parameter Estimation in MIMO Radar Systems
    Chiriac, Vlad M.
    He, Qian
    Haimovich, Alexander M.
    Blum, Rick S.
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2015, 63 (18) : 4956 - 4968
  • [9] Cramer H., 1946, Mathematical methods of statistics.
  • [10] Decarli Nicolo, 2014, 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), P4673, DOI 10.1109/ICASSP.2014.6854488