Privacy-preserving cloud-edge collaborative learning without trusted third-party coordinator

被引:2
作者
Yu, Xiaopeng [1 ]
Tang, Dianhua [1 ,2 ]
Zhao, Wei [1 ]
机构
[1] Sci & Technol Commun Secur Lab, Chengdu 610041, Peoples R China
[2] Univ Elect Sci & Technol China, Sch Comp Sci & Engn, Chengdu 611731, Peoples R China
来源
JOURNAL OF CLOUD COMPUTING-ADVANCES SYSTEMS AND APPLICATIONS | 2023年 / 12卷 / 01期
基金
中国国家自然科学基金;
关键词
Cloud computing; Edge computing; Collaborative learning; Parallel processing; Security and privacy; Homomorphic encryption; CRYPTOSYSTEMS; NOISE;
D O I
10.1186/s13677-023-00394-x
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Cloud-edge collaborative learning has received considerable attention recently, which is an emerging distributed machine learning (ML) architecture for improving the performance of model training among cloud center and edge nodes. However, existing cloud-edge collaborative learning schemes cannot efficiently train high-performance models on large-scale sparse samples, and have the potential risk of revealing the privacy of sensitive data. In this paper, adopting homomorphic encryption (HE) cryptographic technique, we present a privacy-preserving cloud-edge collaborative learning over vertically partitioned data, which allows cloud center and edge node to securely train a shared model without a third-party coordinator, and thus greatly reduces the system complexity. Furthermore, the proposed scheme adopts the batching technique and single instruction multiple data (SIMD) to achieve parallel processing. Finally, the evaluation results show that the proposed scheme improves the model performance and reduces the training time compared with the existing methods; the security analysis indicates that our scheme can guarantee the security in semi-honest model.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] A Secure Data-Sharing Scheme for Privacy-Preserving Supporting Node-Edge-Cloud Collaborative Computation
    Zheng, Kaifa
    Ding, Caiyang
    Wang, Jinchen
    ELECTRONICS, 2023, 12 (12)
  • [42] VPPFL: Verifiable Privacy-Preserving Federated Learning in Cloud Environment
    Wang, Huiyong
    Yang, Tengfei
    Ding, Yong
    Tang, Shijie
    Wang, Yujue
    IEEE ACCESS, 2024, 12 : 151998 - 152008
  • [43] PFLF: Privacy-Preserving Federated Learning Framework for Edge Computing
    Zhou, Hao
    Yang, Geng
    Dai, Hua
    Liu, Guoxiu
    IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2022, 17 : 1905 - 1918
  • [44] Privacy-Preserving and Verifiable Federated Learning Framework for Edge Computing
    Zhou, Hao
    Yang, Geng
    Huang, Yuxian
    Dai, Hua
    Xiang, Yang
    IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2023, 18 : 565 - 580
  • [45] Towards robust and privacy-preserving federated learning in edge computing
    Zhou, Hongliang
    Zheng, Yifeng
    Jia, Xiaohua
    COMPUTER NETWORKS, 2024, 243
  • [46] PMC: A Privacy-preserving Deep Learning Model Customization Framework for Edge Computing
    Liu, Bingyan
    Li, Yuanchun
    Liu, Yunxin
    Guo, Yao
    Chen, Xiangqun
    PROCEEDINGS OF THE ACM ON INTERACTIVE MOBILE WEARABLE AND UBIQUITOUS TECHNOLOGIES-IMWUT, 2020, 4 (04):
  • [47] Privacy-Preserving Multidimensional Data Aggregation Scheme Without Trusted Authority in Smart Grid
    Zuo, Xiangjian
    Li, Lixiang
    Peng, Haipeng
    Luo, Shoushan
    Yang, Yixian
    IEEE SYSTEMS JOURNAL, 2021, 15 (01): : 395 - 406
  • [48] A Trusted Third-Party (TTP) based Encryption Scheme for Ensuring Data Confidentiality in Cloud Environment
    Rizvi, Syed
    Cover, Katie
    Gates, Christopher
    COMPLEX ADAPTIVE SYSTEMS, 2014, 36 : 381 - 386
  • [49] Privacy-Preserving Multi-Party Machine Learning for Object Detection
    Chakroun, Imen
    Vander Aa, Tom
    Wuyts, Roel
    Verarcht, Wilfried
    2021 IEEE GLOBAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND INTERNET OF THINGS (GCAIOT), 2021, : 7 - 13
  • [50] Achieve privacy-preserving simplicial depth query over collaborative cloud servers
    Mahdikhani, Hassan
    Shahsavarifar, Rasoul
    Lu, Rongxing
    Bremner, David
    PEER-TO-PEER NETWORKING AND APPLICATIONS, 2020, 13 (01) : 412 - 423